Machine Learning - A Comprehensive, Step-by-Step Guide to Learning and Applying Advanced Concepts and Techniques in Machine Learning. 3

Par : Peter Bradley
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN978-1-393-98103-9
  • EAN9781393981039
  • Date de parution24/06/2019
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurRelay Publishing

Résumé

Do you have a clear understanding of the different types of machine learning algorithms?Do you know what a neural network is, and how you can build it?If you have read the second book in the series, the answer to both the questions is yes. If you want to gather more information about machine learning, deep learning and neural networks, you have come to the right place. Over the course of the book, you will gather information on the following: The difference between machine learning and deep learning Python libraries Advantages of using Python Developing supervised and unsupervised machine learning algorithms in Python Assessing or evaluating a neural network The information in this book will help you gather a clear understanding of what machine learning is, how you can build different models and where you can use these models.
You can use the programs given in the book as a sample or a base for you to build your programs. If you are still learning how to code in Python, you can simply copy the code in the books and analyze different input data sets. So what are you waiting for? Grab a copy of this book Now, and build your very own regression and clustering machine learning algorithms.
Do you have a clear understanding of the different types of machine learning algorithms?Do you know what a neural network is, and how you can build it?If you have read the second book in the series, the answer to both the questions is yes. If you want to gather more information about machine learning, deep learning and neural networks, you have come to the right place. Over the course of the book, you will gather information on the following: The difference between machine learning and deep learning Python libraries Advantages of using Python Developing supervised and unsupervised machine learning algorithms in Python Assessing or evaluating a neural network The information in this book will help you gather a clear understanding of what machine learning is, how you can build different models and where you can use these models.
You can use the programs given in the book as a sample or a base for you to build your programs. If you are still learning how to code in Python, you can simply copy the code in the books and analyze different input data sets. So what are you waiting for? Grab a copy of this book Now, and build your very own regression and clustering machine learning algorithms.