Learning Theory from First Principles

Par : Francis Bach
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages496
  • FormatePub
  • ISBN978-0-262-38136-9
  • EAN9780262381369
  • Date de parution24/12/2024
  • Protection num.Adobe DRM
  • Taille30 Mo
  • Infos supplémentairesepub
  • ÉditeurThe MIT Press

Résumé

A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory. Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures.
Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students.  Provides a balanced and unified treatment of most prevalent machine learning methods  Emphasizes practical application and features only commonly used algorithmic frameworks  Covers modern topics not found in existing texts, such as overparameterized models and structured prediction  Integrates coverage of statistical theory, optimization theory, and approximation theory Focuses on adaptivity, allowing distinctions between various learning techniques Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory. Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures.
Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students.  Provides a balanced and unified treatment of most prevalent machine learning methods  Emphasizes practical application and features only commonly used algorithmic frameworks  Covers modern topics not found in existing texts, such as overparameterized models and structured prediction  Integrates coverage of statistical theory, optimization theory, and approximation theory Focuses on adaptivity, allowing distinctions between various learning techniques Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors
L'apprentissage profond
Ian Goodfellow, Yoshua Bengio, Aaron Courville
E-book
54,99 €