Learning Pandas 2.0

Par : Matthew Rosch
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8223562429
  • EAN9798223562429
  • Date de parution10/04/2023
  • Protection num.Adobe DRM
  • Infos supplémentairesepub
  • ÉditeurDraft2Digital

Résumé

"Learning Pandas 2.0" is an essential guide for anyone looking to harness the power of Python's premier data manipulation library. With this comprehensive resource, you will not only master core Pandas 2.0 concepts but also learn how to employ its advanced features to perform efficient data manipulation and analysis. Throughout the book, you will acquire a deep understanding of Pandas 2.0's data structures, indexing, and selection techniques.
Gain expertise in loading, storing, and cleaning data from various file formats and sources, ensuring data integrity and consistency. As you progress, you will delve into advanced data transformation, merging, and aggregation methods to extract meaningful insights and generate insightful reports. "Learning Pandas 2.0" also covers specialized data processing needs like time series data, DateTime operations, and geospatial analysis.
Furthermore, this book demonstrates how to integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. This will empower you to build powerful data-driven models to solve complex problems and enhance your decision-making capabilities. Key Learnings Master core Pandas 2.0 concepts, including data structures, indexing, and selection for efficient data manipulation.
Load, store, and clean data from various file formats and sources, ensuring data integrity and consistency. Perform advanced data transformation, merging, and aggregation techniques for insightful analysis and reporting. Harness time series data, DateTime operations, and geospatial analysis for specialized data processing needs. Visualize data effectively using Seaborn, Plotly, and advanced geospatial visualization tools.
Integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics.  Table of Content Introduction to Pandas 2.0 Data Read, Storage, and File Formats Indexing and Selecting Data Data Manipulation and Transformation Time Series and DateTime Operations Performance Optimization and Scaling Machine Learning with Pandas 2.0 Text Data and Natural Language Processing Geospatial Data Analysis
"Learning Pandas 2.0" is an essential guide for anyone looking to harness the power of Python's premier data manipulation library. With this comprehensive resource, you will not only master core Pandas 2.0 concepts but also learn how to employ its advanced features to perform efficient data manipulation and analysis. Throughout the book, you will acquire a deep understanding of Pandas 2.0's data structures, indexing, and selection techniques.
Gain expertise in loading, storing, and cleaning data from various file formats and sources, ensuring data integrity and consistency. As you progress, you will delve into advanced data transformation, merging, and aggregation methods to extract meaningful insights and generate insightful reports. "Learning Pandas 2.0" also covers specialized data processing needs like time series data, DateTime operations, and geospatial analysis.
Furthermore, this book demonstrates how to integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. This will empower you to build powerful data-driven models to solve complex problems and enhance your decision-making capabilities. Key Learnings Master core Pandas 2.0 concepts, including data structures, indexing, and selection for efficient data manipulation.
Load, store, and clean data from various file formats and sources, ensuring data integrity and consistency. Perform advanced data transformation, merging, and aggregation techniques for insightful analysis and reporting. Harness time series data, DateTime operations, and geospatial analysis for specialized data processing needs. Visualize data effectively using Seaborn, Plotly, and advanced geospatial visualization tools.
Integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics.  Table of Content Introduction to Pandas 2.0 Data Read, Storage, and File Formats Indexing and Selecting Data Data Manipulation and Transformation Time Series and DateTime Operations Performance Optimization and Scaling Machine Learning with Pandas 2.0 Text Data and Natural Language Processing Geospatial Data Analysis
PyTorch Cookbook
Matthew Rosch
E-book
29,49 €
Learning PyTorch 2.0
Matthew Rosch
E-book
29,49 €