Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz

Par : Joël Merker

Formats :

Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages354
  • FormatPDF
  • ISBN978-2-7056-7781-7
  • EAN9782705677817
  • Date de parution25/08/2010
  • Protection num.Adobe DRM
  • Taille2 Mo
  • Infos supplémentairespdf
  • ÉditeurHermann
  • PréfacierJean-Jacques Szczeciniarz

Résumé

Est-il possible de caractériser l'espace euclidien tridimensionnel qui s'offre si immédiatement à l'intuition physique au moyen d'axiomes mathématiques simples et naturels ? Plus généralement, est-il possible de caractériser les espaces de Bolyai-Lobatchevskii à courbure constante négative, ainsi que les espaces de Riemann à courbure constante positive, à l'exclusion de toute autre géométrie contraire à une intuition directe ? À une époque (1830-1850) où l'émergence nécessaire des géométries dites non-euclidiennes devenait incontestable, c'est Riemann qui a soulevé cette question profonde et difficile dans son discours d'habilitation (1854), sans chercher, toutefois, à la résoudre complètement.
Helmholtz (1868) l'interprétera en conceptualisant le mouvement des corps dans l'espace et il tentera d'établir rigoureusement que le caractère métrique et localement homogène d'un espace se déduit d'axiomes de mobilité maximale pour des corps rigides. Mais il fallut attendre les travaux de Sophus Lie, et notamment la Theorie der Transformationsgruppen (2100 pages, 1884-1893) écrite en collaboration avec Friedrich Engel, pour qu'une solution complète et rigoureuse soit apportée à ce fascinant problème, à la fois au plan local et au plan global.
L'introduction historique, philosophique et mathématique ainsi que la traduction que nous proposons ici aspirent à faire connaître un aspect de l'ouvre monumentale de Sophus Lie qui demeure essentiellement peu évoqué au sein de la philosophie traditionnelle géométrique. Joël Merker, agrégé de mathématiques et de philosophie, spécialiste d'analyse et de géométrie à plusieurs variables réelles ou complexes, chercheur au CNRS - Département de Mathématiques et Applications, École Normale Supérieure.
Est-il possible de caractériser l'espace euclidien tridimensionnel qui s'offre si immédiatement à l'intuition physique au moyen d'axiomes mathématiques simples et naturels ? Plus généralement, est-il possible de caractériser les espaces de Bolyai-Lobatchevskii à courbure constante négative, ainsi que les espaces de Riemann à courbure constante positive, à l'exclusion de toute autre géométrie contraire à une intuition directe ? À une époque (1830-1850) où l'émergence nécessaire des géométries dites non-euclidiennes devenait incontestable, c'est Riemann qui a soulevé cette question profonde et difficile dans son discours d'habilitation (1854), sans chercher, toutefois, à la résoudre complètement.
Helmholtz (1868) l'interprétera en conceptualisant le mouvement des corps dans l'espace et il tentera d'établir rigoureusement que le caractère métrique et localement homogène d'un espace se déduit d'axiomes de mobilité maximale pour des corps rigides. Mais il fallut attendre les travaux de Sophus Lie, et notamment la Theorie der Transformationsgruppen (2100 pages, 1884-1893) écrite en collaboration avec Friedrich Engel, pour qu'une solution complète et rigoureuse soit apportée à ce fascinant problème, à la fois au plan local et au plan global.
L'introduction historique, philosophique et mathématique ainsi que la traduction que nous proposons ici aspirent à faire connaître un aspect de l'ouvre monumentale de Sophus Lie qui demeure essentiellement peu évoqué au sein de la philosophie traditionnelle géométrique. Joël Merker, agrégé de mathématiques et de philosophie, spécialiste d'analyse et de géométrie à plusieurs variables réelles ou complexes, chercheur au CNRS - Département de Mathématiques et Applications, École Normale Supérieure.