Nouveauté

Large Language Model Using Tensorflow: A Complete TensorFlow Implementation Guide for Modern AI Development

Par : Aarav Joshi
Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8231157372
  • EAN9798231157372
  • Date de parution25/05/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurWalzone Press

Résumé

Large Language Model Using Tensorflow: A Complete TensorFlow Implementation Guide for Modern AI Development is the definitive hands-on guide for building state-of-the-art language models from the ground up using TensorFlow. This comprehensive resource takes you through every stage of LLM development, from understanding transformer architecture fundamentals to deploying production-ready models at scale.
Unlike other theoretical treatments, this book provides practical, code-first instruction using TensorFlow's latest features and best practices. You'll master essential concepts including attention mechanisms, positional encoding, tokenization strategies, and advanced training techniques like mixed precision and distributed computing. The book covers critical topics such as instruction tuning, reinforcement learning from human feedback (RLHF), and parameter-efficient fine-tuning methods like LoRA.
Each chapter builds systematically on previous concepts, featuring detailed code implementations, optimization strategies, and real-world deployment considerations. You'll learn to handle large-scale datasets, implement efficient training pipelines, and navigate the complexities of model scaling and production deployment using TensorFlow Serving and cloud platforms. Whether you're a machine learning engineer, AI researcher, or data scientist, this book provides the practical expertise needed to build, train, and deploy your own large language models.
By the end, you'll have created a fully functional LLM comparable to GPT-style models, complete with the knowledge to customize and scale it for specific applications.
Large Language Model Using Tensorflow: A Complete TensorFlow Implementation Guide for Modern AI Development is the definitive hands-on guide for building state-of-the-art language models from the ground up using TensorFlow. This comprehensive resource takes you through every stage of LLM development, from understanding transformer architecture fundamentals to deploying production-ready models at scale.
Unlike other theoretical treatments, this book provides practical, code-first instruction using TensorFlow's latest features and best practices. You'll master essential concepts including attention mechanisms, positional encoding, tokenization strategies, and advanced training techniques like mixed precision and distributed computing. The book covers critical topics such as instruction tuning, reinforcement learning from human feedback (RLHF), and parameter-efficient fine-tuning methods like LoRA.
Each chapter builds systematically on previous concepts, featuring detailed code implementations, optimization strategies, and real-world deployment considerations. You'll learn to handle large-scale datasets, implement efficient training pipelines, and navigate the complexities of model scaling and production deployment using TensorFlow Serving and cloud platforms. Whether you're a machine learning engineer, AI researcher, or data scientist, this book provides the practical expertise needed to build, train, and deploy your own large language models.
By the end, you'll have created a fully functional LLM comparable to GPT-style models, complete with the knowledge to customize and scale it for specific applications.