La simulation de Monte Carlo

Par : Bruno Tuffin
Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages270
  • FormatPDF
  • ISBN978-2-7462-4084-1
  • EAN9782746240841
  • Date de parution05/02/2010
  • Copier Coller01 page(s) autorisée(s)
  • Protection num.Digital Watermarking
  • Taille3 Mo
  • Transferts max.Autorisé
  • Infos supplémentairesPDF avec Watermark
  • ÉditeurHermes Science Publications

Résumé

La simulation de Monte Carlo est un outil statistique puissant pour résoudre des problèmes mathématiques complexes ou plus exactement pour approcher leur solution aussi précisément que souhaité. Cet ouvrage décrit les principaux problèmes auxquels s'attaque la simulation de Monte Carlo : calcul de sommes ou d'intégrales, d'espérances mathématiques, de problèmes d'optimisation, de résolution d'équations linéaires, intégrales ou différentielles.
La simulation de Monte Carlo est illustré de nombreux exemples d'application issus de domaines aussi variés que les télécommunications, la finance, la fiabilité, la physique, etc. Il expose comment les solutions peuvent être approchées et l'erreur analysée via un intervalle de confiance contenant la solution avec une probabilité donnée. Ce livre présente également les différentes techniques d'accélération réduisant l'intervalle de confiance pour un temps de simulation donné.
D'autres questions fondamentales sont traitées comme la génération du hasard et des variables aléatoires ou la méthode de simulation de quasi-Monte Carlo qui utilise des suites non aléatoires mais mieux réparties sur le domaine d'échantillonnage, permettant une convergence plus rapide.
La simulation de Monte Carlo est un outil statistique puissant pour résoudre des problèmes mathématiques complexes ou plus exactement pour approcher leur solution aussi précisément que souhaité. Cet ouvrage décrit les principaux problèmes auxquels s'attaque la simulation de Monte Carlo : calcul de sommes ou d'intégrales, d'espérances mathématiques, de problèmes d'optimisation, de résolution d'équations linéaires, intégrales ou différentielles.
La simulation de Monte Carlo est illustré de nombreux exemples d'application issus de domaines aussi variés que les télécommunications, la finance, la fiabilité, la physique, etc. Il expose comment les solutions peuvent être approchées et l'erreur analysée via un intervalle de confiance contenant la solution avec une probabilité donnée. Ce livre présente également les différentes techniques d'accélération réduisant l'intervalle de confiance pour un temps de simulation donné.
D'autres questions fondamentales sont traitées comme la génération du hasard et des variables aléatoires ou la méthode de simulation de quasi-Monte Carlo qui utilise des suites non aléatoires mais mieux réparties sur le domaine d'échantillonnage, permettant une convergence plus rapide.