L'unification des mathématiques. Algèbres géométriques, géométrie algébrique et philosophie de Langlands
Par : , , , ,Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages183
- FormatPDF
- ISBN978-2-7462-8838-6
- EAN9782746288386
- Date de parution06/07/2012
- Copier CollerNon Autorisé
- Protection num.Digital Watermarking
- Taille2 Mo
- Infos supplémentairespdf
- ÉditeurHermes Science Publications
Résumé
La pensée mathématique offre un panorama impressionnant de recherches dans les multiples directions dessinées par les réorganisations successives que la matière a connues. Cet ouvrage porte un éclairage philosophique et historique sur certains développements qui donne un sens aux transformations subies par la pensée mathématique au cours du temps pour actualiser le portrait déjà ancien de "l'unité des mathématiques".
Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.
L'unification des mathématiques introduit le non-mathématicien à ce double mouvement qui inspire, par ailleurs, une nouvelle philosophie.
Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.
L'unification des mathématiques introduit le non-mathématicien à ce double mouvement qui inspire, par ailleurs, une nouvelle philosophie.
La pensée mathématique offre un panorama impressionnant de recherches dans les multiples directions dessinées par les réorganisations successives que la matière a connues. Cet ouvrage porte un éclairage philosophique et historique sur certains développements qui donne un sens aux transformations subies par la pensée mathématique au cours du temps pour actualiser le portrait déjà ancien de "l'unité des mathématiques".
Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.
L'unification des mathématiques introduit le non-mathématicien à ce double mouvement qui inspire, par ailleurs, une nouvelle philosophie.
Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.
L'unification des mathématiques introduit le non-mathématicien à ce double mouvement qui inspire, par ailleurs, une nouvelle philosophie.