INTRODUCTION TO LATTICE GEOMETRY THROUGH GROUP ACTION

Par : Boris Zhilinskii
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages271
  • FormatPDF
  • ISBN978-2-7598-1952-2
  • EAN9782759819522
  • Date de parution04/12/2015
  • Protection num.Digital Watermarking
  • Taille7 Mo
  • ÉditeurEDP Sciences

Résumé

Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems.
Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach.
Along with crystallographic applications, qualitative features of lattices of quantum states appearing for quantum problems associated with classical Hamiltonian integrable dynamical systems are shortly discussed. The presentation of the material is presented through a number of concrete examples with an extensive use of graphical visualization. The book is aimed at graduated and post-graduate students and young researchers in theoretical physics, dynamical systems, applied mathematics, solid state physics, crystallography, molecular physics, theoretical chemistry, ...
Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems.
Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach.
Along with crystallographic applications, qualitative features of lattices of quantum states appearing for quantum problems associated with classical Hamiltonian integrable dynamical systems are shortly discussed. The presentation of the material is presented through a number of concrete examples with an extensive use of graphical visualization. The book is aimed at graduated and post-graduate students and young researchers in theoretical physics, dynamical systems, applied mathematics, solid state physics, crystallography, molecular physics, theoretical chemistry, ...