Introduction aux variétés différentielles
Par :Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages384
- FormatePub
- ISBN978-2-7598-3383-2
- EAN9782759833832
- Date de parution10/11/2023
- Protection num.Digital Watermarking
- Taille9 Mo
- Infos supplémentairesepub
- ÉditeurEDP Sciences
Résumé
Ce livre scientifique est une initiation aux variétés différentielles, préalable à des enseignements plus spécialisés. Le lecteur devra posséder une compétence sur le calcul différentiel dans les espaces euclidiens. Sont abordées les principales notions de géométrie différentielle : variétés différentielles, espaces tangent et cotangent, champs de vecteurs, formes différentielles. De nombreux exemples sont traités en détail.
Cet ensemble constitue une introduction aux groupes de Lie. Il est illustré par les éléments de théorie du degré et de cohomologie. Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume. Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition.
Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre. Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires.
Les physiciens sont également concernés.
Cet ensemble constitue une introduction aux groupes de Lie. Il est illustré par les éléments de théorie du degré et de cohomologie. Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume. Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition.
Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre. Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires.
Les physiciens sont également concernés.
Ce livre scientifique est une initiation aux variétés différentielles, préalable à des enseignements plus spécialisés. Le lecteur devra posséder une compétence sur le calcul différentiel dans les espaces euclidiens. Sont abordées les principales notions de géométrie différentielle : variétés différentielles, espaces tangent et cotangent, champs de vecteurs, formes différentielles. De nombreux exemples sont traités en détail.
Cet ensemble constitue une introduction aux groupes de Lie. Il est illustré par les éléments de théorie du degré et de cohomologie. Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume. Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition.
Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre. Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires.
Les physiciens sont également concernés.
Cet ensemble constitue une introduction aux groupes de Lie. Il est illustré par les éléments de théorie du degré et de cohomologie. Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume. Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition.
Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre. Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires.
Les physiciens sont également concernés.