High Performance Python. Practical Performant Programming for Humans
Par : ,Formats :
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages370
- FormatMulti-format
- ISBN978-1-4493-6158-7
- EAN9781449361587
- Date de parution22/08/2014
- Protection num.NC
- Infos supplémentairesMulti-format incluant Mobipocket...
- ÉditeurO'Reilly Media
Résumé
Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python's implementation. You'll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs.
How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations.
- Get a better grasp of numpy, Cython, and profilers
- Learn how Python abstracts the underlying computer architecture
- Use profiling to find bottlenecks in CPU time and memory usage
- Write efficient programs by choosing appropriate data structures
- Speed up matrix and vector computations
- Use tools to compile Python down to machine code
- Manage multiple I/O and computational operations concurrently
- Convert multiprocessing code to run on a local or remote cluster
- Solve large problems while using less RAM
Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python's implementation. You'll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs.
How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations.
- Get a better grasp of numpy, Cython, and profilers
- Learn how Python abstracts the underlying computer architecture
- Use profiling to find bottlenecks in CPU time and memory usage
- Write efficient programs by choosing appropriate data structures
- Speed up matrix and vector computations
- Use tools to compile Python down to machine code
- Manage multiple I/O and computational operations concurrently
- Convert multiprocessing code to run on a local or remote cluster
- Solve large problems while using less RAM