Géométrie algorithmique : des données géométriques à la géométrie des données

Par : Jean-Daniel Boissonnat
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatMulti-format
  • ISBN978-2-7226-0468-1
  • EAN9782722604681
  • Date de parution09/01/2018
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF avec W...
  • ÉditeurCollège de France

Résumé

Les représentations numériques 3D ont révolutionné notre compréhension du monde. Elles sont devenues indispensables pour simuler des opérations chirurgicales, créer de nouveaux modes d'expression artistique ou explorer les ressources naturelles. La géométrie algorithmique apparaît à l'intersection de la géométrie et de l'informatique. Comment échantillonner, représenter et traiter des formes géométriques complexes ? Comment offrir des garanties théoriques sur la qualité des approximations et la complexité des algorithmes ? Comment assurer la fiabilité et l'efficacité des programmes informatiques ? Ces questions se posent en dimensions 2 et 3, mais aussi en plus grandes dimensions, pour analyser par exemple les grandes masses de données essentielles à la science moderne.
Les représentations numériques 3D ont révolutionné notre compréhension du monde. Elles sont devenues indispensables pour simuler des opérations chirurgicales, créer de nouveaux modes d'expression artistique ou explorer les ressources naturelles. La géométrie algorithmique apparaît à l'intersection de la géométrie et de l'informatique. Comment échantillonner, représenter et traiter des formes géométriques complexes ? Comment offrir des garanties théoriques sur la qualité des approximations et la complexité des algorithmes ? Comment assurer la fiabilité et l'efficacité des programmes informatiques ? Ces questions se posent en dimensions 2 et 3, mais aussi en plus grandes dimensions, pour analyser par exemple les grandes masses de données essentielles à la science moderne.