Fundamentals of Python Data Engineering
Par :Formats :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
- FormatePub
- ISBN8230510840
- EAN9798230510840
- Date de parution17/05/2025
- Protection num.pas de protection
- Infos supplémentairesepub
- ÉditeurIndependently Published
Résumé
The book explores essential topics including data storage solutions, transformation techniques, orchestration frameworks, and security best practices. It provides hands-on examples for working with various data sources, implementing ETL/ELT processes, and creating production-ready data systems. Written for both aspiring and experienced data engineers, this book emphasizes real-world applications while covering advanced topics like distributed computing, cloud-native architectures, and DataOps methodologies.
Each chapter builds on fundamental concepts while introducing modern tools and techniques used in industry-leading organizations. By the end of this book, readers will have gained the knowledge and skills to architect, build, and maintain resilient Python-based data systems that can handle enterprise-scale challenges while meeting business requirements.
The book explores essential topics including data storage solutions, transformation techniques, orchestration frameworks, and security best practices. It provides hands-on examples for working with various data sources, implementing ETL/ELT processes, and creating production-ready data systems. Written for both aspiring and experienced data engineers, this book emphasizes real-world applications while covering advanced topics like distributed computing, cloud-native architectures, and DataOps methodologies.
Each chapter builds on fundamental concepts while introducing modern tools and techniques used in industry-leading organizations. By the end of this book, readers will have gained the knowledge and skills to architect, build, and maintain resilient Python-based data systems that can handle enterprise-scale challenges while meeting business requirements.