Nouveauté

Fundamentals of Machine Learning: a Simplified Approach

Par : Er. Sudhir Goswami, Dr. Nirvikar Katiyar, Dr. Pradeep Kumar, Dr. K. P. Sharma, Dr. Mamta Tiwari
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN978-93-6418-344-4
  • EAN9789364183444
  • Date de parution29/06/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurBLUE DUCK PUBLICATIONS

Résumé

This book aims to serve as a comprehensive introduction to the principles, algorithms, and applications of machine learning, with a particular emphasis on both foundational and cutting-edge techniques. It is designed for students, researchers, and practitioners who wish to deepen their understanding of machine learning concepts, explore their practical applications, and grasp the underlying mathematical frameworks.
The content spans a broad range of topics, beginning with fundamental machine learning concepts, such as regression, decision trees, and artificial neural networks. It then delves into specialized domains like support vector machines, reinforcement learning, and convolutional neural networks. Along the way, readers will encounter detailed explanations of key algorithms, including ID3, Q-learning, and deep Q-learning, as well as practical insights into their implementation.
Real-world case studies-such as diabetic retinopathy diagnosis using convolutional neural networks, building smart speakers, and self-driving cars-illustrate the transformative potential of these techniques.
This book aims to serve as a comprehensive introduction to the principles, algorithms, and applications of machine learning, with a particular emphasis on both foundational and cutting-edge techniques. It is designed for students, researchers, and practitioners who wish to deepen their understanding of machine learning concepts, explore their practical applications, and grasp the underlying mathematical frameworks.
The content spans a broad range of topics, beginning with fundamental machine learning concepts, such as regression, decision trees, and artificial neural networks. It then delves into specialized domains like support vector machines, reinforcement learning, and convolutional neural networks. Along the way, readers will encounter detailed explanations of key algorithms, including ID3, Q-learning, and deep Q-learning, as well as practical insights into their implementation.
Real-world case studies-such as diabetic retinopathy diagnosis using convolutional neural networks, building smart speakers, and self-driving cars-illustrate the transformative potential of these techniques.