Efficient Memory Optimization for IoT Intrusion Detection

Par : Ethan Evelyn
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8223630951
  • EAN9798223630951
  • Date de parution06/06/2024
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurDraft2Digital

Résumé

The advent of the Internet of Things (IoT) has brought significant benefits to various industries, but at the same time, it has also led to an increase in cyber threats. Therefore, Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of IoT devices. One of the challenges faced by IDS is the
The advent of the Internet of Things (IoT) has brought significant benefits to various industries, but at the same time, it has also led to an increase in cyber threats. Therefore, Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of IoT devices. One of the challenges faced by IDS is the limited memory available in IoT devices. This makes it necessary to optimize memory usage for efficient intrusion detection.
In this context, P. Suresh's research on "Efficient Memory Optimization for IoT Intrusion Detection" is an essential contribution to IoT security. The study focuses on improving the performance of IDS by optimizing memory usage. The research proposes innovative techniques for efficient memory allocation, management, and access in IoT devices. The proposed solution employs machine learning, deep learning, and artificial intelligence techniques, along with big data analytics and data mining, for anomaly detection, pattern recognition, and threat detection.
The IDS also includes real-time monitoring, data processing, and data storage, retrieval, and analysis capabilities. The research evaluates the performance of the proposed IDS by conducting experimental studies and benchmarking against existing systems. The results show that the proposed solution achieves better intrusion detection rates with reduced memory usage, improved system scalability, and enhanced energy efficiency.
The study's findings provide valuable insights into memory optimization techniques for IoT intrusion detection, highlighting the need for efficient resource utilization and system performance. The research also emphasizes the significance of system design, architecture, integration, and testing in ensuring reliable and secure IoT devices.