Efficient Memory Optimization for IoT Intrusion Detection
Par :Formats :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
- FormatePub
- ISBN8223630951
- EAN9798223630951
- Date de parution06/06/2024
- Protection num.pas de protection
- Infos supplémentairesepub
- ÉditeurDraft2Digital
Résumé
In this context, P. Suresh's research on "Efficient Memory Optimization for IoT Intrusion Detection" is an essential contribution to IoT security. The study focuses on improving the performance of IDS by optimizing memory usage. The research proposes innovative techniques for efficient memory allocation, management, and access in IoT devices. The proposed solution employs machine learning, deep learning, and artificial intelligence techniques, along with big data analytics and data mining, for anomaly detection, pattern recognition, and threat detection.
The IDS also includes real-time monitoring, data processing, and data storage, retrieval, and analysis capabilities. The research evaluates the performance of the proposed IDS by conducting experimental studies and benchmarking against existing systems. The results show that the proposed solution achieves better intrusion detection rates with reduced memory usage, improved system scalability, and enhanced energy efficiency.
The study's findings provide valuable insights into memory optimization techniques for IoT intrusion detection, highlighting the need for efficient resource utilization and system performance. The research also emphasizes the significance of system design, architecture, integration, and testing in ensuring reliable and secure IoT devices.