Doing Data Science

Par : Rachel Schutt

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages406
  • FormatMulti-format
  • ISBN978-1-4493-5863-1
  • EAN9781449358631
  • Date de parution09/10/2013
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that's so clouded in hype? This insightful book, based on Columbia University's Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use.
If you're familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: - Statistical inference, exploratory data analysis, and the data science process - Algorithms - Spam filters, Naive Bayes, and data wrangling - Logistic regression - Financial modeling - Recommendation engines and causality - Data visualization - Social networks and data journalism - Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O'Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that's so clouded in hype? This insightful book, based on Columbia University's Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use.
If you're familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: - Statistical inference, exploratory data analysis, and the data science process - Algorithms - Spam filters, Naive Bayes, and data wrangling - Logistic regression - Financial modeling - Recommendation engines and causality - Data visualization - Social networks and data journalism - Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O'Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.