Découverte du Machine Learning. Les outils de l'apprentissage automatique

Par : Gérard Fleury, Matthieu Gondran, Philippe Lacomme, Chafik Samir
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages306
  • FormatPDF
  • ISBN978-2-340-05521-6
  • EAN9782340055216
  • Date de parution20/04/2021
  • Protection num.Adobe DRM
  • Taille29 Mo
  • Infos supplémentairespdf
  • ÉditeurEllipses

Résumé

Cet ouvrage propose une découverte pragmatique du Machine Learning à travers des exemples implémentés. Il constitue une introduction à différentes méthodes permettant aux étudiants de DUT, de licence, des écoles d'ingénieurs et aux chercheurs de découvrir plusieurs aspects du domaine. Le domaine du Machine Learning couvre un large spectre d'outils et de méthodes. Cet ouvrage fait un focus particulier sur les réseaux de neurones, les réseaux Bayésiens, les méthodes de classification, le pattern mining et les séries temporelles.
La découverte s'effectue en utilisant des bibliothèques dédiées au Machine Learning, notamment TensorFlow, Keras, pyAgrum et Weka. Les exemples du livre sont essentiellement des problèmes qui ont été tirés des domaines d'expertise des auteurs. Les codes informatiques sont proposés en Python, en C et en Java, car les domaines où le Machine Learning est utile sont très nombreux et il est important d'avoir une vue globale de ce qu'il est possible de faire avec les outils récents.
Cet ouvrage propose une découverte pragmatique du Machine Learning à travers des exemples implémentés. Il constitue une introduction à différentes méthodes permettant aux étudiants de DUT, de licence, des écoles d'ingénieurs et aux chercheurs de découvrir plusieurs aspects du domaine. Le domaine du Machine Learning couvre un large spectre d'outils et de méthodes. Cet ouvrage fait un focus particulier sur les réseaux de neurones, les réseaux Bayésiens, les méthodes de classification, le pattern mining et les séries temporelles.
La découverte s'effectue en utilisant des bibliothèques dédiées au Machine Learning, notamment TensorFlow, Keras, pyAgrum et Weka. Les exemples du livre sont essentiellement des problèmes qui ont été tirés des domaines d'expertise des auteurs. Les codes informatiques sont proposés en Python, en C et en Java, car les domaines où le Machine Learning est utile sont très nombreux et il est important d'avoir une vue globale de ce qu'il est possible de faire avec les outils récents.