Data Science Essentials with R: Learn with focus on data manipulation, visualization, and machine learning
Par :Formats :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
- FormatePub
- ISBN978-93-6589-809-5
- EAN9789365898095
- Date de parution30/12/2024
- Protection num.Adobe DRM
- Infos supplémentairesepub
- ÉditeurBPB Publications
Résumé
Learn to clean, explore, and transform data using tools like dplyr. Key statistical concepts like probability, hypothesis testing, and modeling are covered, providing a foundation for data-driven decisions. Discover supervised and unsupervised ML techniques, feature engineering, and model evaluation. The book also provides career guidance in data science, including skill-building tips and job search strategies, equipping you to excel in this growing field.
By the end of this book, you will be able to confidently use R to prepare data for analysis and apply ML algorithms to make predictions and drive business decisions. KEY FEATURES ? Master R for effective data analysis and ML.? Analyze data, identify patterns, and drive informed decision-making.? Learn by doing hands-on R codes and applying ML techniques. WHAT YOU WILL LEARN? Use R to clean, analyze, and visualize data effectively.? Apply statistical techniques to find patterns and trends in data.? Understand and implement key ML algorithms step-by-step.? Data visualization techniques using ggplot2 to create informative visualizations.? Strong foundation in statistical concepts, including probability theory, hypothesis testing, and statistical modeling.
WHO THIS BOOK IS FORThis book is ideal for individuals with a basic understanding of programming and statistics who aspire to enter the field of data science. Professionals such as data analysts, software engineers, and researchers will find this book particularly valuable as it provides a practical approach to leveraging data for informed decision-making.