Data-Driven Decisions: An Introduction to Machine Learning. Technology

Par : Nandini K
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8230822387
  • EAN9798230822387
  • Date de parution25/11/2024
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurIndependently Published

Résumé

Data-Driven Decisions: An Introduction to Machine Learning provides a comprehensive and accessible introduction to the principles and applications of machine learning for students, professionals, and decision-makers. Combining theoretical foundations with practical examples, this book guides readers through key concepts such as supervised and unsupervised learning, feature engineering, model evaluation, and interpretability.
With a focus on how machine learning drives informed, data-driven decision-making across industries, the text balances technical depth with clarity. Through case studies, hands-on exercises, and discussions on ethical considerations, this book equips readers with the tools to apply machine learning effectively in solving real-world problems.
Data-Driven Decisions: An Introduction to Machine Learning provides a comprehensive and accessible introduction to the principles and applications of machine learning for students, professionals, and decision-makers. Combining theoretical foundations with practical examples, this book guides readers through key concepts such as supervised and unsupervised learning, feature engineering, model evaluation, and interpretability.
With a focus on how machine learning drives informed, data-driven decision-making across industries, the text balances technical depth with clarity. Through case studies, hands-on exercises, and discussions on ethical considerations, this book equips readers with the tools to apply machine learning effectively in solving real-world problems.