Classification in the Wild. The Science and Art of Transparent Decision Making

Par : Konstantinos V. Katsikopoulos, Ozgur Simsek, Marcus Buckmann, Gerd Gigerenzer
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages200
  • FormatePub
  • ISBN978-0-262-36195-8
  • EAN9780262361958
  • Date de parution02/02/2021
  • Protection num.Adobe DRM
  • Taille1 Mo
  • Infos supplémentairesepub
  • ÉditeurThe MIT Press

Résumé

Rules for building formal models that use fast-and-frugal heuristics, extending the psychological study of classification to the real world of uncertainty. This book focuses on classification--allocating objects into categories--"in the wild, " in real-world situations and far from the certainty of the lab. In the wild, unlike in typical psychological experiments, the future is not knowable and uncertainty cannot be meaningfully reduced to probability.
Connecting the science of heuristics with machine learning, the book shows how to create formal models using classification rules that are simple, fast, and transparent and that can be as accurate as mathematically sophisticated algorithms developed for machine learning.
Rules for building formal models that use fast-and-frugal heuristics, extending the psychological study of classification to the real world of uncertainty. This book focuses on classification--allocating objects into categories--"in the wild, " in real-world situations and far from the certainty of the lab. In the wild, unlike in typical psychological experiments, the future is not knowable and uncertainty cannot be meaningfully reduced to probability.
Connecting the science of heuristics with machine learning, the book shows how to create formal models using classification rules that are simple, fast, and transparent and that can be as accurate as mathematically sophisticated algorithms developed for machine learning.