Car following Dynamics: Experiments and Models
Par : ,Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages158
- FormatPDF
- ISBN978-2-7598-3194-4
- EAN9782759831944
- Date de parution27/11/2023
- Protection num.Digital Watermarking
- Taille35 Mo
- Infos supplémentairespdf
- ÉditeurEDP Sciences
Résumé
Over the past nine decades, the field of traffic flow studies has witnessed remarkable advancements driven by empirical data. These data have illuminated traffic phenomena like breakdowns, oscillations, and hysteresis. However, despite these strides, the intricate nature of traffic flow and its underlying mechanisms remain subjects of ongoing debate and incomplete comprehension. Robert Herman, the pioneering figure in transportation science, firmly believed in the experimental essence of traffic theory.
Unlike conventional practices of collecting limited traffic flow data, conducting traffic experiments empowers control of flow composition and rate, minimizes interference from complex variables, and facilitates the discovery of fundamental characteristics and mechanisms of traffic flow. In alignment with Herman's conviction, the authors of this book undertook a series of experimental and modeling studies to delve into the intricacies of traffic flow evolution through the lens of car-following dynamics.
Rooted in systems science and engineering theory, this book commences with experimental exploration of traffic flow. Employing methods to unearth individual decision-making mechanisms, the evolutionary patterns of group behavior, and their interconnectedness, theoretical models are employed to bridge micro-mechanisms with macro-phenomena. This approach introduces innovative ideas and methods, fostering the refined development of urban traffic behavior and management theory.
It makes vital contributions in unraveling driver behavior and the evolution of road traffic flow, transcending conventional theories, and addressing globally recognized transportation challenges. Ultimately, it plays a pivotal role in advancing modern traffic flow theory that aligns with real-world complexities.
Unlike conventional practices of collecting limited traffic flow data, conducting traffic experiments empowers control of flow composition and rate, minimizes interference from complex variables, and facilitates the discovery of fundamental characteristics and mechanisms of traffic flow. In alignment with Herman's conviction, the authors of this book undertook a series of experimental and modeling studies to delve into the intricacies of traffic flow evolution through the lens of car-following dynamics.
Rooted in systems science and engineering theory, this book commences with experimental exploration of traffic flow. Employing methods to unearth individual decision-making mechanisms, the evolutionary patterns of group behavior, and their interconnectedness, theoretical models are employed to bridge micro-mechanisms with macro-phenomena. This approach introduces innovative ideas and methods, fostering the refined development of urban traffic behavior and management theory.
It makes vital contributions in unraveling driver behavior and the evolution of road traffic flow, transcending conventional theories, and addressing globally recognized transportation challenges. Ultimately, it plays a pivotal role in advancing modern traffic flow theory that aligns with real-world complexities.
Over the past nine decades, the field of traffic flow studies has witnessed remarkable advancements driven by empirical data. These data have illuminated traffic phenomena like breakdowns, oscillations, and hysteresis. However, despite these strides, the intricate nature of traffic flow and its underlying mechanisms remain subjects of ongoing debate and incomplete comprehension. Robert Herman, the pioneering figure in transportation science, firmly believed in the experimental essence of traffic theory.
Unlike conventional practices of collecting limited traffic flow data, conducting traffic experiments empowers control of flow composition and rate, minimizes interference from complex variables, and facilitates the discovery of fundamental characteristics and mechanisms of traffic flow. In alignment with Herman's conviction, the authors of this book undertook a series of experimental and modeling studies to delve into the intricacies of traffic flow evolution through the lens of car-following dynamics.
Rooted in systems science and engineering theory, this book commences with experimental exploration of traffic flow. Employing methods to unearth individual decision-making mechanisms, the evolutionary patterns of group behavior, and their interconnectedness, theoretical models are employed to bridge micro-mechanisms with macro-phenomena. This approach introduces innovative ideas and methods, fostering the refined development of urban traffic behavior and management theory.
It makes vital contributions in unraveling driver behavior and the evolution of road traffic flow, transcending conventional theories, and addressing globally recognized transportation challenges. Ultimately, it plays a pivotal role in advancing modern traffic flow theory that aligns with real-world complexities.
Unlike conventional practices of collecting limited traffic flow data, conducting traffic experiments empowers control of flow composition and rate, minimizes interference from complex variables, and facilitates the discovery of fundamental characteristics and mechanisms of traffic flow. In alignment with Herman's conviction, the authors of this book undertook a series of experimental and modeling studies to delve into the intricacies of traffic flow evolution through the lens of car-following dynamics.
Rooted in systems science and engineering theory, this book commences with experimental exploration of traffic flow. Employing methods to unearth individual decision-making mechanisms, the evolutionary patterns of group behavior, and their interconnectedness, theoretical models are employed to bridge micro-mechanisms with macro-phenomena. This approach introduces innovative ideas and methods, fostering the refined development of urban traffic behavior and management theory.
It makes vital contributions in unraveling driver behavior and the evolution of road traffic flow, transcending conventional theories, and addressing globally recognized transportation challenges. Ultimately, it plays a pivotal role in advancing modern traffic flow theory that aligns with real-world complexities.