Biomathématiques de la croissance. Le cas des végétaux

Par : Roger Buis

Formats :

Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages604
  • FormatePub
  • ISBN978-2-7598-2867-8
  • EAN9782759828678
  • Date de parution11/05/2016
  • Protection num.Digital Watermarking
  • Taille11 Mo
  • Infos supplémentairesepub
  • ÉditeurEDP Sciences

Résumé

Cet ouvrage original rend compte, et de la complexité des phénomènes de croissance des végétaux, et des formalismes mathématiques utilisés pour les appréhender. Chaque modèle est présenté comme un « instrument d'intelligibilité » du processus (S. Bachelard). On approfondit ainsi la dualité entre la réalité biologique observée et le formalisme mathématique qui lui est le plus adapté. On examine les hypothèses de base, les interprétations biologiques associées, les propriétés cinétiques et on donne des exemples variés.
Sont développés des aspects tels la dynamique de la croissance (stabilité des points singuliers, multistationnarité) et sa distribution spatiale (inhomogénéité du champ de croissance). Enfin, le lien entre modèles continus et modèles discrets offre une démarche en forme de conclusion de l'ouvrage. Un site web compagnon propose des compléments mathématiques et des développements qui élargissent la stratégie d'utilisation de ce « couteau suisse » de la croissance. L'ouvrage peut être utilisé de plusieurs façons et à divers niveaux.
Il constitue un livre de référence pour les étudiants de master, de doctorat et de filières ingénieur. Un public plus averti pourra approfondir sa réflexion sur la dualité entre modèles mathématiques et réalités expérimentales.
Cet ouvrage original rend compte, et de la complexité des phénomènes de croissance des végétaux, et des formalismes mathématiques utilisés pour les appréhender. Chaque modèle est présenté comme un « instrument d'intelligibilité » du processus (S. Bachelard). On approfondit ainsi la dualité entre la réalité biologique observée et le formalisme mathématique qui lui est le plus adapté. On examine les hypothèses de base, les interprétations biologiques associées, les propriétés cinétiques et on donne des exemples variés.
Sont développés des aspects tels la dynamique de la croissance (stabilité des points singuliers, multistationnarité) et sa distribution spatiale (inhomogénéité du champ de croissance). Enfin, le lien entre modèles continus et modèles discrets offre une démarche en forme de conclusion de l'ouvrage. Un site web compagnon propose des compléments mathématiques et des développements qui élargissent la stratégie d'utilisation de ce « couteau suisse » de la croissance. L'ouvrage peut être utilisé de plusieurs façons et à divers niveaux.
Il constitue un livre de référence pour les étudiants de master, de doctorat et de filières ingénieur. Un public plus averti pourra approfondir sa réflexion sur la dualité entre modèles mathématiques et réalités expérimentales.