Big Data Glossary

Par : Pete Warden
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages60
  • FormatMulti-format
  • ISBN978-1-4493-1458-3
  • EAN9781449314583
  • Date de parution13/09/2011
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

To help you navigate the large number of new data tools available, this guide describes 60 of the most recent innovations, from NoSQL databases and MapReduce approaches to machine learning and visualization tools. Descriptions are based on first-hand experience with these tools in a production environment. This handy glossary also includes a chapter of key terms that help define many of these tool categories: - NoSQL Databases-Document-oriented databases using a key/value interface rather than SQL - MapReduce-Tools that support distributed computing on large datasets - Storage-Technologies for storing data in a distributed way - Servers-Ways to rent computing power on remote machines - Processing-Tools for extracting valuable information from large datasets - Natural Language Processing-Methods for extracting information from human-created text - Machine Learning-Tools that automatically perform data analyses, based on results of a one-off analysis - Visualization-Applications that present meaningful data graphically - Acquisition-Techniques for cleaning up messy public data sources - Serialization-Methods to convert data structure or object state into a storable format
To help you navigate the large number of new data tools available, this guide describes 60 of the most recent innovations, from NoSQL databases and MapReduce approaches to machine learning and visualization tools. Descriptions are based on first-hand experience with these tools in a production environment. This handy glossary also includes a chapter of key terms that help define many of these tool categories: - NoSQL Databases-Document-oriented databases using a key/value interface rather than SQL - MapReduce-Tools that support distributed computing on large datasets - Storage-Technologies for storing data in a distributed way - Servers-Ways to rent computing power on remote machines - Processing-Tools for extracting valuable information from large datasets - Natural Language Processing-Methods for extracting information from human-created text - Machine Learning-Tools that automatically perform data analyses, based on results of a one-off analysis - Visualization-Applications that present meaningful data graphically - Acquisition-Techniques for cleaning up messy public data sources - Serialization-Methods to convert data structure or object state into a storable format