Nouveauté

Benford's Law Explained: Insights for Quants and Developers in Predictive Analytics. O6.0 TRANSFORM DATA

Par : Elizabeth Mogopodi
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8232937065
  • EAN9798232937065
  • Date de parution17/10/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurHamza elmir

Résumé

Discover the hidden order in datasets with Benford's Law. This phenomenon reveals that digit 1 appears ~30% of the time, while 9 trails at ~6%. Experts leverage this to detect anomalies in finance, physics, and AI. "Benford's Law Explained" provides the depth needed to apply this phenomenon in real-world scenarios. Battle-Tested Applications- Financial Forensics: Identify cooked books, detect anomalies in ledger entries, expense reports, and stock volumes.
Implement SEC-compliant workflows.- AI/ML Safeguards: Validate synthetic data generators, GAN outputs, and audit training datasets for biases or manipulation.- IoT & Sensor Analytics: Identify malfunctioning sensors, filter noise from industrial telemetry streams, and detect anomalies.- Compliance & Auditing: Automate Benford screens for anti-money laundering (AML) and procurement fraud. Quantify "reasonable suspicion" for regulatory evidence.
Technical Deep Dives- Code Libraries: Python (with benford_py/custom Pandas), R (benford.analysis), SQL (window functions), and Scala/Spark for petabyte-scale data.- Advanced Metrics: Kullback-Leibler divergence, Mantissa arc tests, and sequential analysis.- Edge Cases Demystified: When to avoid Benford (assigned IDs, bounded ranges).- Scalability Tactics: Approximate algorithms for streaming data and distributed systems.
Real-World Case Studies- Quant Fund: Detecting spoofed trades in limit order books.- E-Comm Platform: Uncovering fake reviews via rating distributions.- Health Tech: Validating clinical trial data integrity. For Whom?- Quants & Traders: Screening market data for manipulation.- Data Engineers: Building validation layers in ETL pipelines.- MLOps/Data Scientists: Stress-testing model inputs/outputs.- Auditors & Risk Officers: Automating forensic workflows.- Academic Researchers: Statistical foundations and extensions.
This book provides a comprehensive guide to applying Benford's Law in real-world scenarios, with code-ready insights and technical deep dives.
Discover the hidden order in datasets with Benford's Law. This phenomenon reveals that digit 1 appears ~30% of the time, while 9 trails at ~6%. Experts leverage this to detect anomalies in finance, physics, and AI. "Benford's Law Explained" provides the depth needed to apply this phenomenon in real-world scenarios. Battle-Tested Applications- Financial Forensics: Identify cooked books, detect anomalies in ledger entries, expense reports, and stock volumes.
Implement SEC-compliant workflows.- AI/ML Safeguards: Validate synthetic data generators, GAN outputs, and audit training datasets for biases or manipulation.- IoT & Sensor Analytics: Identify malfunctioning sensors, filter noise from industrial telemetry streams, and detect anomalies.- Compliance & Auditing: Automate Benford screens for anti-money laundering (AML) and procurement fraud. Quantify "reasonable suspicion" for regulatory evidence.
Technical Deep Dives- Code Libraries: Python (with benford_py/custom Pandas), R (benford.analysis), SQL (window functions), and Scala/Spark for petabyte-scale data.- Advanced Metrics: Kullback-Leibler divergence, Mantissa arc tests, and sequential analysis.- Edge Cases Demystified: When to avoid Benford (assigned IDs, bounded ranges).- Scalability Tactics: Approximate algorithms for streaming data and distributed systems.
Real-World Case Studies- Quant Fund: Detecting spoofed trades in limit order books.- E-Comm Platform: Uncovering fake reviews via rating distributions.- Health Tech: Validating clinical trial data integrity. For Whom?- Quants & Traders: Screening market data for manipulation.- Data Engineers: Building validation layers in ETL pipelines.- MLOps/Data Scientists: Stress-testing model inputs/outputs.- Auditors & Risk Officers: Automating forensic workflows.- Academic Researchers: Statistical foundations and extensions.
This book provides a comprehensive guide to applying Benford's Law in real-world scenarios, with code-ready insights and technical deep dives.