Beginning with Machine Learning: The Ultimate Introduction to Machine Learning, Deep Learning, Scikit-learn, and TensorFlow (English Edition)
Par : ,Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub protégé est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- FormatePub
- ISBN978-93-5551-105-8
- EAN9789355511058
- Date de parution12/12/2022
- Protection num.Adobe DRM
- Infos supplémentairesepub
- ÉditeurBPB Publications
Résumé
A step-by-step guide to get started with Machine Learning KEY FEATURES ? Understand different types of Machine Learning like Supervised, Unsupervised, Semi-supervised, and Reinforcement learning.? Learn how to implement Machine Learning algorithms effectively and efficiently.? Get familiar with the various libraries & tools for Machine Learning. DESCRIPTION Should I choose supervised learning or reinforcement learning? Which algorithm is best suited for my application? How does deep learning advance the capacities of problem-solving? If you have found yourself asking these questions, this book is specially developed for you. The book will help readers understand the core concepts of machine learning and techniques to evaluate any machine learning model with ease.
The book starts with the importance of machine learning by analyzing its impact on the global landscape. The book also covers Supervised and Unsupervised ML along with Reinforcement Learning. In subsequent chapters, the book explores these topics in even greater depth, evaluating the pros and cons of each and exploring important topics such as Bias-Variance Tradeoff, Clustering, and Dimensionality Reduction.
The book also explains model evaluation techniques such as Cross-Validation and GridSearchCV. The book also features mind maps which help enhance the learning process by making it easier to learn and retain information. This book is a one-stop solution for covering basic ML concepts in detail and the perfect stepping stone to becoming an expert in ML and deep learning and even applying them to different professions. WHAT YOU WILL LEARN? Understand important concepts to fully grasp the idea of supervised learning.? Get familiar with the basics of unsupervised learning and some of its algorithms.? Learn how to analyze the performance of your Machine Learning models.? Explore the different methodologies of Reinforcement Learning.? Learn how to implement different types of Neural networks.
WHO THIS BOOK IS FORThis book is aimed at those who are new to machine learning and deep learning or want to extend their ML knowledge. Anyone looking to apply ML to data in their profession will benefit greatly from this book.
The book starts with the importance of machine learning by analyzing its impact on the global landscape. The book also covers Supervised and Unsupervised ML along with Reinforcement Learning. In subsequent chapters, the book explores these topics in even greater depth, evaluating the pros and cons of each and exploring important topics such as Bias-Variance Tradeoff, Clustering, and Dimensionality Reduction.
The book also explains model evaluation techniques such as Cross-Validation and GridSearchCV. The book also features mind maps which help enhance the learning process by making it easier to learn and retain information. This book is a one-stop solution for covering basic ML concepts in detail and the perfect stepping stone to becoming an expert in ML and deep learning and even applying them to different professions. WHAT YOU WILL LEARN? Understand important concepts to fully grasp the idea of supervised learning.? Get familiar with the basics of unsupervised learning and some of its algorithms.? Learn how to analyze the performance of your Machine Learning models.? Explore the different methodologies of Reinforcement Learning.? Learn how to implement different types of Neural networks.
WHO THIS BOOK IS FORThis book is aimed at those who are new to machine learning and deep learning or want to extend their ML knowledge. Anyone looking to apply ML to data in their profession will benefit greatly from this book.
A step-by-step guide to get started with Machine Learning KEY FEATURES ? Understand different types of Machine Learning like Supervised, Unsupervised, Semi-supervised, and Reinforcement learning.? Learn how to implement Machine Learning algorithms effectively and efficiently.? Get familiar with the various libraries & tools for Machine Learning. DESCRIPTION Should I choose supervised learning or reinforcement learning? Which algorithm is best suited for my application? How does deep learning advance the capacities of problem-solving? If you have found yourself asking these questions, this book is specially developed for you. The book will help readers understand the core concepts of machine learning and techniques to evaluate any machine learning model with ease.
The book starts with the importance of machine learning by analyzing its impact on the global landscape. The book also covers Supervised and Unsupervised ML along with Reinforcement Learning. In subsequent chapters, the book explores these topics in even greater depth, evaluating the pros and cons of each and exploring important topics such as Bias-Variance Tradeoff, Clustering, and Dimensionality Reduction.
The book also explains model evaluation techniques such as Cross-Validation and GridSearchCV. The book also features mind maps which help enhance the learning process by making it easier to learn and retain information. This book is a one-stop solution for covering basic ML concepts in detail and the perfect stepping stone to becoming an expert in ML and deep learning and even applying them to different professions. WHAT YOU WILL LEARN? Understand important concepts to fully grasp the idea of supervised learning.? Get familiar with the basics of unsupervised learning and some of its algorithms.? Learn how to analyze the performance of your Machine Learning models.? Explore the different methodologies of Reinforcement Learning.? Learn how to implement different types of Neural networks.
WHO THIS BOOK IS FORThis book is aimed at those who are new to machine learning and deep learning or want to extend their ML knowledge. Anyone looking to apply ML to data in their profession will benefit greatly from this book.
The book starts with the importance of machine learning by analyzing its impact on the global landscape. The book also covers Supervised and Unsupervised ML along with Reinforcement Learning. In subsequent chapters, the book explores these topics in even greater depth, evaluating the pros and cons of each and exploring important topics such as Bias-Variance Tradeoff, Clustering, and Dimensionality Reduction.
The book also explains model evaluation techniques such as Cross-Validation and GridSearchCV. The book also features mind maps which help enhance the learning process by making it easier to learn and retain information. This book is a one-stop solution for covering basic ML concepts in detail and the perfect stepping stone to becoming an expert in ML and deep learning and even applying them to different professions. WHAT YOU WILL LEARN? Understand important concepts to fully grasp the idea of supervised learning.? Get familiar with the basics of unsupervised learning and some of its algorithms.? Learn how to analyze the performance of your Machine Learning models.? Explore the different methodologies of Reinforcement Learning.? Learn how to implement different types of Neural networks.
WHO THIS BOOK IS FORThis book is aimed at those who are new to machine learning and deep learning or want to extend their ML knowledge. Anyone looking to apply ML to data in their profession will benefit greatly from this book.