Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging

Par : John Myles White

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages88
  • FormatMulti-format
  • ISBN978-1-4493-4132-9
  • EAN9781449341329
  • Date de parution10/12/2012
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers.
You'll quickly learn the benefits of several simple algorithms-including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms-by working through code examples written in Python, which you can easily adapt for deployment on your own website. - Learn the basics of A/B testing-and recognize when it's better to use bandit algorithms - Develop a unit testing framework for debugging bandit algorithms - Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials
When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers.
You'll quickly learn the benefits of several simple algorithms-including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms-by working through code examples written in Python, which you can easily adapt for deployment on your own website. - Learn the basics of A/B testing-and recognize when it's better to use bandit algorithms - Develop a unit testing framework for debugging bandit algorithms - Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials