Bad Data Handbook

Par : Ethan McCallum

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format Multi-format est :
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages264
  • FormatMulti-format
  • ISBN978-1-4493-2187-1
  • EAN9781449321871
  • Date de parution07/11/2012
  • Protection num.NC
  • Infos supplémentairesMulti-format incluant PDF sans p...
  • ÉditeurO'Reilly Media

Résumé

What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they've recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data.
Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you'll discover how to: - Test drive your data to see if it's ready for analysis - Work spreadsheet data into a usable form - Handle encoding problems that lurk in text data - Develop a successful web-scraping effort - Use NLP tools to reveal the real sentiment of online reviews - Address cloud computing issues that can impact your analysis effort - Avoid policies that create data analysis roadblocks - Take a systematic approach to data quality analysis
What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they've recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data.
Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you'll discover how to: - Test drive your data to see if it's ready for analysis - Work spreadsheet data into a usable form - Handle encoding problems that lurk in text data - Develop a successful web-scraping effort - Use NLP tools to reveal the real sentiment of online reviews - Address cloud computing issues that can impact your analysis effort - Avoid policies that create data analysis roadblocks - Take a systematic approach to data quality analysis