Attractors for Non-Classical Diffusion Equations and Kirchhoff Wave Equations

Par : Yuming Qin, Bin Yang
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages266
  • FormatPDF
  • ISBN978-2-7598-3539-3
  • EAN9782759835393
  • Date de parution21/10/2024
  • Protection num.Digital Watermarking
  • Taille3 Mo
  • Infos supplémentairespdf
  • ÉditeurEDP Sciences

Résumé

This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the authors and their collaborators over recent years. This book has two distinguishing features. First, while there are many published works on non-classical diffusion equations in Sobolev spaces without time-dependent terms but few results in time-dependent spaces, this book fills this gap.
Second, this book provides new results on the existence, regularity and upper semicontinuity of time-dependent global attractors, strong attractors, and pullback attractors in time-dependent spaces, as well as the ideas and methods for dealing with these problems that can be used in other related models.
This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the authors and their collaborators over recent years. This book has two distinguishing features. First, while there are many published works on non-classical diffusion equations in Sobolev spaces without time-dependent terms but few results in time-dependent spaces, this book fills this gap.
Second, this book provides new results on the existence, regularity and upper semicontinuity of time-dependent global attractors, strong attractors, and pullback attractors in time-dependent spaces, as well as the ideas and methods for dealing with these problems that can be used in other related models.