Anonymizing Health Data - Case Studies and Methods to Get You Started

Luk Arbuckle, Khaled El Emam

Note moyenne : | 0 avis
Ce produit n'a pas encore été évalué. Soyez le premier !
  • O'Reilly Media

  • Paru le : 11/12/2013
  • Tous vos e-books sur notre application de lecture
  • Téléchargement immédiat
  • Aide au choix numérique
21,99 €
E-book - Multi-format
Vérifier la compatibilité avec vos supports
Avec l'alerte parution, vous recevez un email dès que l'ouvrage est disponible
Votre note
With this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets. Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky.
This book demonstrates techniques for handling different data types, based on the authors' experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others. - Understand different methods for working with cross-sectional and longitudinal datasets - Assess the risk of adversaries who attempt to re-identify patients in anonymized datasets - Reduce the size and complexity of massive datasets without losing key information or jeopardizing privacy - Use methods to anonymize unstructured free-form text data - Minimize the risks inherent in geospatial data, without omitting critical location-based health information - Look at ways to anonymize coding information in health data - Learn the challenge of anonymously linking related datasets
  • Date de parution : 11/12/2013
  • Editeur : O'Reilly Media
  • ISBN : 978-1-4493-6302-4
  • EAN : 9781449363024
  • Format : Multi-format
  • Nb. de pages : 212 pages
  • Caractéristiques du format Multi-format
    • Pages : 212
  • Caractéristiques du format ePub
    • Protection num. : pas de protection
  • Caractéristiques du format PDF
    • Protection num. : pas de protection
  • Caractéristiques du format Mobipocket
    • Protection num. : pas de protection
  • Caractéristiques du format Streaming
    • Protection num. : pas de protection
Luk Arbuckle has been crunching numbers for a decade. He originally plied his trade in the area of image processing and analysis, and then in the area of applied statistics. Since joining the Electronic Health Information Laboratory (EHIL) at the CHEO Research Institute he has worked on methods to de-identify health data, participated in the development and evaluation of secure computation protocols, and provided all manner of statistical support.
As a consultant with Privacy Analytics, he has also been heavily involved in conducting risk analyses on the re-identification of patients in health data. Dr. Khaled El Emam is an Associate Professor at the University of Ottawa, Faculty of Medicine, a senior investigator at the Children's Hospital of Eastern Ontario Research Institute, and a Canada Research Chair in Electronic Health Information at the University of Ottawa.
He is also the Founder and CEO of Privacy Analytics, Inc. His main area of research is developing techniques for health data de-identification/anonymization and secure computation protocols for health research and public health purposes. He has made many contributions to the health privacy area.

Nos avis clients sur

Avis Trustpilot

Anonymizing Health Data - Case Studies and Methods to Get You Started est également présent dans les rayons

Luk Arbuckle et Khaled El Emam - Anonymizing Health Data - Case Studies and Methods to Get You Started.
Anonymizing Health Data. Case Studies and Methods to...
Luk Arbuckle, ...
21,99 €
Decitre utilise des cookies pour vous offrir le meilleur service possible. En continuant votre navigation, vous en acceptez l'utilisation. En savoir plus OK

Ne partez pas tout de suite...

Inscription newsletter