Analyse fondamentale. Espaces métriques, topologiques et normés
2e édition revue et augmentée
Par : Formats :
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
- Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
- Compatible avec une lecture sur liseuses Vivlio
- Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
- Non compatible avec un achat hors France métropolitaine

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement
Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
- Nombre de pages174
- FormatPDF
- ISBN979-10-370-2853-2
- EAN9791037028532
- Date de parution20/08/2013
- Protection num.Adobe DRM
- Taille11 Mo
- Infos supplémentairespdf
- ÉditeurHermann
Résumé
Cet ouvrage, utile aux étudiants en dernière année de Licence et en Master de mathématiques, et autres filières scientifiques, présente dans un premier temps les faits fondamentaux sur les espaces métriques, vectoriels et normés, précédés d'une esquisse de la théorie des ensembles. Les principales classes des espaces métriques (séparables, compacts, complets, connexes et disconnexes) y sont traitées de façon détaillée.
Le volume est conçu de telle sorte qu'on puisse limiter la lecture aux aspects métriques ou bien l'élargir aux concepts topologiques généraux.
Les annexes sur les espaces topologiques compacts et sur la métrisation permettent un approfondissement ultérieur. De même, les chapitres traitant les faits essentiels sur les espaces normés et la théorie spectrale sont accompagnés d'une annexe approfondie consacrée aux espaces fonctionnels. La présentation est enrichie d'informations concises sur les origines et les développements récents des concepts.
Plusieurs sujets sont abordés de manière originale : par exemple l'application des partitions aux caractérisations des espaces métrisables.
Les annexes sur les espaces topologiques compacts et sur la métrisation permettent un approfondissement ultérieur. De même, les chapitres traitant les faits essentiels sur les espaces normés et la théorie spectrale sont accompagnés d'une annexe approfondie consacrée aux espaces fonctionnels. La présentation est enrichie d'informations concises sur les origines et les développements récents des concepts.
Plusieurs sujets sont abordés de manière originale : par exemple l'application des partitions aux caractérisations des espaces métrisables.
Cet ouvrage, utile aux étudiants en dernière année de Licence et en Master de mathématiques, et autres filières scientifiques, présente dans un premier temps les faits fondamentaux sur les espaces métriques, vectoriels et normés, précédés d'une esquisse de la théorie des ensembles. Les principales classes des espaces métriques (séparables, compacts, complets, connexes et disconnexes) y sont traitées de façon détaillée.
Le volume est conçu de telle sorte qu'on puisse limiter la lecture aux aspects métriques ou bien l'élargir aux concepts topologiques généraux.
Les annexes sur les espaces topologiques compacts et sur la métrisation permettent un approfondissement ultérieur. De même, les chapitres traitant les faits essentiels sur les espaces normés et la théorie spectrale sont accompagnés d'une annexe approfondie consacrée aux espaces fonctionnels. La présentation est enrichie d'informations concises sur les origines et les développements récents des concepts.
Plusieurs sujets sont abordés de manière originale : par exemple l'application des partitions aux caractérisations des espaces métrisables.
Les annexes sur les espaces topologiques compacts et sur la métrisation permettent un approfondissement ultérieur. De même, les chapitres traitant les faits essentiels sur les espaces normés et la théorie spectrale sont accompagnés d'une annexe approfondie consacrée aux espaces fonctionnels. La présentation est enrichie d'informations concises sur les origines et les développements récents des concepts.
Plusieurs sujets sont abordés de manière originale : par exemple l'application des partitions aux caractérisations des espaces métrisables.