AI Techniques and Tools Through Python. Supervised Learning: Classification Methods, Ensemble Learning and Neural Networks

Par : César Pérez López
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8230580454
  • EAN9798230580454
  • Date de parution30/12/2024
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurIndependently Published

Résumé

Artificial Intelligence combines mathematical algorithms and Machine Learning, Deep Learning and Big Data techniques to extract the knowledge contained in data and present it in a comprehensible and automatic way.  Machine learning uses two types of techniques: supervised learning, which trains a model with known input and output data to predict future results, and unsupervised learning, which finds hidden patterns or intrinsic structures in the input data.
Most of the supervised learning techniques for classification are developed throughout this book from a methodological point of view and from a practical point of view with applications through Python software. The following techniques are covered in depth: Nearest Neighbour (kNN), Support Vector Machine (SVM), Naive Bayes, Ensemble Methods, Bagging, Boosting, Voting, Stacking, Blending, Random Forest, Neural Networks, Multilayer Perceptron, Radial Basis Networks, Hopfield Networks, LSTM Networks, RNN Recurrent Networks, GRU Networks and Neural Networks for Time Series Prediction.
Artificial Intelligence combines mathematical algorithms and Machine Learning, Deep Learning and Big Data techniques to extract the knowledge contained in data and present it in a comprehensible and automatic way.  Machine learning uses two types of techniques: supervised learning, which trains a model with known input and output data to predict future results, and unsupervised learning, which finds hidden patterns or intrinsic structures in the input data.
Most of the supervised learning techniques for classification are developed throughout this book from a methodological point of view and from a practical point of view with applications through Python software. The following techniques are covered in depth: Nearest Neighbour (kNN), Support Vector Machine (SVM), Naive Bayes, Ensemble Methods, Bagging, Boosting, Voting, Stacking, Blending, Random Forest, Neural Networks, Multilayer Perceptron, Radial Basis Networks, Hopfield Networks, LSTM Networks, RNN Recurrent Networks, GRU Networks and Neural Networks for Time Series Prediction.