A Hands-On Guide to Fine-Tuning Large Language Models with PyTorch and Hugging Face

Par : Daniel Voigt Godoy
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8227232182
  • EAN9798227232182
  • Date de parution16/02/2025
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurBig Dog Books, LLC

Résumé

Are you ready to fine-tune your own LLMs?This book is a practical guide to fine-tuning Large Language Models (LLMs), combining high-level concepts with step-by-step instructions to train these powerful models for your specific use cases. Who Is This Book For?This is an intermediate-level resource-positioned
Are you ready to fine-tune your own LLMs?This book is a practical guide to fine-tuning Large Language Models (LLMs), combining high-level concepts with step-by-step instructions to train these powerful models for your specific use cases. Who Is This Book For?This is an intermediate-level resource-positioned between building a large language model from scratch and deploying an LLM in production-designed for practitioners with some prior experience in deep learning.
If terms like Transformers, attention mechanisms, Adam optimizer, tokens, embeddings, or GPUs sound familiar, you're in the right place. Familiarity with Hugging Face and PyTorch is assumed. If you're new to these concepts, consider starting with a beginner-friendly introduction to deep learning with PyTorch before diving in. What You'll Learn: Load quantized models using BitsAndBytes. Configure Low-Rank Adapters (LoRA) using Hugging Face's PEFT.
Format datasets effectively using chat templates and formatting functions. Fine-tune LLMs on consumer-grade GPUs using techniques such as gradient checkpointing and accumulation. Deploy LLMs locally in the GGUF format using Llama.cpp and Ollama. Troubleshoot common error messages and exceptions to keep your fine-tuning process on track. This book doesn't just skim the surface; it zooms in on the critical adjustments and configuration-those all-important "knobs"-that make or break the fine-tuning process.
By the end, you'll have the skills and confidence to fine-tune LLMs for your own real-world applications. Whether you're looking to enhance existing models or tailor them to niche tasks, this book is your essential companion.
You're Not Your Job
Daniel Voigt Godoy
E-book
5,99 €