Topics in Random Matrix Theory

Par : Terence Tao
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay indisponible
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages282
  • PrésentationRelié
  • FormatGrand Format
  • Poids0.68 kg
  • Dimensions18,6 cm × 26,3 cm × 2,1 cm
  • ISBN978-0-8218-7430-1
  • EAN9780821874301
  • Date de parution01/04/2012
  • CollectionGraduate Studies in Mathemati
  • ÉditeurAmerican Mathematical Society

Résumé

The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as lid matrix ensembles.
The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as lid matrix ensembles.
The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.