Euler et le parcours du cavalier. Avec une annexe sur le théorème des polyèdres

Par : Jacques Sesiano

Formats :

Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages272
  • PrésentationBroché
  • Poids0.508 kg
  • Dimensions16,0 cm × 24,0 cm × 1,8 cm
  • ISBN978-2-88074-857-9
  • EAN9782880748579
  • Date de parution29/01/2015
  • ÉditeurPPUR

Résumé

Le problème du cavalier consiste à parcourir toutes les cases d'un échiquier, et une seule fois chacune, en sautant à une case distante de deux cases horizontalement et d'une case verticalement, ou inversement. S'il n'est guère difficile de couvrir une cinquantaine de cases, les tentatives de couvrir tout l'échiquier se révéleront le plus souvent décourageantes. C'est pourquoi la découverte d'un moyen de parvenir à un trajet complet a définitivement associé ce problème au nom de Euler (1707-1783).
Cet ouvrage rapporte l'ensemble de ses recherches, en tenant compte de ses notes manuscrites inédites (reproduites aussi en appendice). De même, son théorème des polyèdres, l'une de ses autres découvertes majeures, est enrichi ici par sa première démonstration, restée manuscrite. Cet ouvrage intéressera les étudiants et les enseignants de mathématiques, mais aussi un public plus général, car les raisonnements d'Euler ne font appel à aucune connaissance profonde des mathématiques.
Ne sachant comment aborder le problème du cavalier, Euler recourt aux essais, et peu à peu établit une théorie en fonction du succès ou de l'insuccès de ses tentatives. Pour le théorème des polyèdres, ce sont des analogies avec le cas des polygones qui le mèneront à la démonstration. Dans les deux cas, le lecteur assistera ici à la naissance et au développement d'une théorie nouvelle.
Le problème du cavalier consiste à parcourir toutes les cases d'un échiquier, et une seule fois chacune, en sautant à une case distante de deux cases horizontalement et d'une case verticalement, ou inversement. S'il n'est guère difficile de couvrir une cinquantaine de cases, les tentatives de couvrir tout l'échiquier se révéleront le plus souvent décourageantes. C'est pourquoi la découverte d'un moyen de parvenir à un trajet complet a définitivement associé ce problème au nom de Euler (1707-1783).
Cet ouvrage rapporte l'ensemble de ses recherches, en tenant compte de ses notes manuscrites inédites (reproduites aussi en appendice). De même, son théorème des polyèdres, l'une de ses autres découvertes majeures, est enrichi ici par sa première démonstration, restée manuscrite. Cet ouvrage intéressera les étudiants et les enseignants de mathématiques, mais aussi un public plus général, car les raisonnements d'Euler ne font appel à aucune connaissance profonde des mathématiques.
Ne sachant comment aborder le problème du cavalier, Euler recourt aux essais, et peu à peu établit une théorie en fonction du succès ou de l'insuccès de ses tentatives. Pour le théorème des polyèdres, ce sont des analogies avec le cas des polygones qui le mèneront à la démonstration. Dans les deux cas, le lecteur assistera ici à la naissance et au développement d'une théorie nouvelle.