Analyse complexe
Par : ,Formats :
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages470
- PrésentationBroché
- Poids0.76 kg
- Dimensions15,0 cm × 22,5 cm × 2,0 cm
- ISBN2-84225-052-4
- EAN9782842250522
- Date de parution02/02/2004
- Collectionenseignement des mathématiques
- ÉditeurCassini
Résumé
Ce livre traite clé la théorie des fonctions d'une variable complexe. On y trouvera ce qui est habituellement enseigné dans un premier cours sur les fonctions holomorphes, ainsi qu'un certain nombre de développements plus avancés. Le livre pourra donc intéresser aussi bien les étudiants en troisième ou quatrième année d'université que les étudiants préparant l'agrégation. Si les thèmes abordés sont bien sûr très classiques, le point de vue est moderne, inspiré par
certains aspects de la théorie des fonctions holomorphes de plusieurs variables. En témoignent l'utilisation constante des formes différentielles, le recours occasionnel à la théorie des distributions, ou la place accordée aux
fonctions sous-harmoniques. Parallèlement, les auteurs se sont attachés à mettre en valeur la position privilégiée de l'analyse complexe à la croisée des chemins entre la géométrie différentielle, la topologie, l'analyse fonctionnelle et l'analyse harmonique. Une place très importante a été accordée aux exercices, qui visent à la fois à faciliter l'assimilation des contenus de base, et à proposer des ouvertures sur des sujets plus avancés.
Ce livre traite clé la théorie des fonctions d'une variable complexe. On y trouvera ce qui est habituellement enseigné dans un premier cours sur les fonctions holomorphes, ainsi qu'un certain nombre de développements plus avancés. Le livre pourra donc intéresser aussi bien les étudiants en troisième ou quatrième année d'université que les étudiants préparant l'agrégation. Si les thèmes abordés sont bien sûr très classiques, le point de vue est moderne, inspiré par
certains aspects de la théorie des fonctions holomorphes de plusieurs variables. En témoignent l'utilisation constante des formes différentielles, le recours occasionnel à la théorie des distributions, ou la place accordée aux
fonctions sous-harmoniques. Parallèlement, les auteurs se sont attachés à mettre en valeur la position privilégiée de l'analyse complexe à la croisée des chemins entre la géométrie différentielle, la topologie, l'analyse fonctionnelle et l'analyse harmonique. Une place très importante a été accordée aux exercices, qui visent à la fois à faciliter l'assimilation des contenus de base, et à proposer des ouvertures sur des sujets plus avancés.