Analyse avancée pour ingénieurs
4e édition
Par : , Formats :
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages330
- PrésentationBroché
- FormatGrand Format
- Poids0.63 kg
- Dimensions16,0 cm × 24,0 cm × 2,2 cm
- ISBN978-2-88915-262-9
- EAN9782889152629
- Date de parution11/10/2018
- CollectionEnseignement des mathématiques
- ÉditeurPPUR
Résumé
La matière traitée dans cet ouvrage comprend l'analyse vectorielle (théorèmes de Green, de la divergence, de Stokes), l'analyse complexe (fonctions holomorphes, équations de Cauchy-Riemann, séries de Laurent, théorème des résidus, applications conformes) ainsi que l'analyse de Fourier (séries de Fourier, transformée de Fourier, transformée de Laplace, applications aux équations différentielles). Les définitions et les théorèmes principaux sont présentés sous forme d'aide-mémoire, ils sont donc énoncés avec clarté et précision mais sans commentaires.
Des exemples significatifs sont ensuite discutés en détails. Enfin de nombreux exercices sont proposés et ils sont intégralement corrigés. Ce livre s'adresse en premier lieu à des étudiants ingénieurs qui ont suivi un cours d'analyse de base (calcul différentiel et intégral). Il peut aussi être utile aux étudiants en mathématiques ou en physique comme complément à un cours plus théorique.
Des exemples significatifs sont ensuite discutés en détails. Enfin de nombreux exercices sont proposés et ils sont intégralement corrigés. Ce livre s'adresse en premier lieu à des étudiants ingénieurs qui ont suivi un cours d'analyse de base (calcul différentiel et intégral). Il peut aussi être utile aux étudiants en mathématiques ou en physique comme complément à un cours plus théorique.
La matière traitée dans cet ouvrage comprend l'analyse vectorielle (théorèmes de Green, de la divergence, de Stokes), l'analyse complexe (fonctions holomorphes, équations de Cauchy-Riemann, séries de Laurent, théorème des résidus, applications conformes) ainsi que l'analyse de Fourier (séries de Fourier, transformée de Fourier, transformée de Laplace, applications aux équations différentielles). Les définitions et les théorèmes principaux sont présentés sous forme d'aide-mémoire, ils sont donc énoncés avec clarté et précision mais sans commentaires.
Des exemples significatifs sont ensuite discutés en détails. Enfin de nombreux exercices sont proposés et ils sont intégralement corrigés. Ce livre s'adresse en premier lieu à des étudiants ingénieurs qui ont suivi un cours d'analyse de base (calcul différentiel et intégral). Il peut aussi être utile aux étudiants en mathématiques ou en physique comme complément à un cours plus théorique.
Des exemples significatifs sont ensuite discutés en détails. Enfin de nombreux exercices sont proposés et ils sont intégralement corrigés. Ce livre s'adresse en premier lieu à des étudiants ingénieurs qui ont suivi un cours d'analyse de base (calcul différentiel et intégral). Il peut aussi être utile aux étudiants en mathématiques ou en physique comme complément à un cours plus théorique.