Propagation d'ondes acoustiques et élastiques

Par : Jean Brac, Jean Brac

Formats :

Actuellement indisponible
Cet article est actuellement indisponible, il ne peut pas être commandé sur notre site pour le moment. Nous vous invitons à vous inscrire à l'alerte disponibilité, vous recevrez un e-mail dès que cet ouvrage sera à nouveau disponible.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages272
  • FormatPDF
  • ISBN2-7462-1724-4
  • EAN9782746217249
  • Date de parution10/03/2003
  • Copier Coller01 page(s) autorisée(s)
  • Protection num.Digital Watermarking
  • Taille7 Mo
  • Transferts max.Autorisé
  • Infos supplémentairesPDF avec Watermark
  • ÉditeurHermes Science Publications

Résumé

Cet ouvrage propose une méthode de construction de schémas numériques de grande précision sur la base d'une analyse spectrale de l'erreur. Ces schémas sont appliqués à la propagation des ondes mais ils peuvent l'être à la résolution par différences finies de tout autre système d'équations aux dérivées partielles. Plusieurs formulations du problème continu sont exposées mais on retient la formulation en vitesses de déplacement et en contraintes.
D'autre part, une analyse des caractéristiques des équations de la propagation conduit à faire une comparaison avec les caractéristiques des équations de la mécanique des fluides et d'indiquer les conditions de la filiation. La discrétisation des équations est basée sur les schémas en grilles décalées. On effectue des développements de Taylor à des ordres élevés et une analyse de l'erreur de discrétisation par transformée de Fourier.
Puis, on introduit la notion d'approximation optimale en contraste avec les approximations basées sur l'erreur de troncature. Les schémas construits restent de type convolutif. Le calcul s'avère très efficace sur la base de l'erreur relative de discrétisation. L'algorithme de calcul des coefficients d'approximation optimale est fourni en Fortran dans une annexe. L'élévation de l'ordre en temps consiste à reporter le calcul des dérivées d'ordre élevé en temps sur des dérivées d'ordre élevé en espace.
Enfin, l'analyse des conditions de stabilité et de dispersion est réalisée pour prendre en compte l'approximation optimale des dérivées pour des ordres élevés en espace et en temps.
Cet ouvrage propose une méthode de construction de schémas numériques de grande précision sur la base d'une analyse spectrale de l'erreur. Ces schémas sont appliqués à la propagation des ondes mais ils peuvent l'être à la résolution par différences finies de tout autre système d'équations aux dérivées partielles. Plusieurs formulations du problème continu sont exposées mais on retient la formulation en vitesses de déplacement et en contraintes.
D'autre part, une analyse des caractéristiques des équations de la propagation conduit à faire une comparaison avec les caractéristiques des équations de la mécanique des fluides et d'indiquer les conditions de la filiation. La discrétisation des équations est basée sur les schémas en grilles décalées. On effectue des développements de Taylor à des ordres élevés et une analyse de l'erreur de discrétisation par transformée de Fourier.
Puis, on introduit la notion d'approximation optimale en contraste avec les approximations basées sur l'erreur de troncature. Les schémas construits restent de type convolutif. Le calcul s'avère très efficace sur la base de l'erreur relative de discrétisation. L'algorithme de calcul des coefficients d'approximation optimale est fourni en Fortran dans une annexe. L'élévation de l'ordre en temps consiste à reporter le calcul des dérivées d'ordre élevé en temps sur des dérivées d'ordre élevé en espace.
Enfin, l'analyse des conditions de stabilité et de dispersion est réalisée pour prendre en compte l'approximation optimale des dérivées pour des ordres élevés en espace et en temps.