Nouveauté

Condensats de Bose-Einstein - Tome 1. La théorie, des fondements aux applications

Par : Yvan Castin

Formats :

Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages562
  • FormatPDF
  • ISBN978-2-7598-3580-5
  • EAN9782759835805
  • Date de parution22/05/2025
  • Protection num.Digital Watermarking
  • Taille26 Mo
  • ÉditeurEDP Sciences

Résumé

Après leur prédiction par Einstein en 1925, les gaz condensés de Bose sont restés longtemps des vues de l'esprit car, par la faute d'interactions attractives, aucun système connu ne restait gazeux à suffisamment basse température pour en permettre l'observation. Mais des théories microscopiques ont été développées, comme celle très féconde de Bogolioubov en 1947, pour comprendre les effets d'une interaction modèle répulsive sur les propriétés statiques et dynamiques du gaz, dont la superfluidité.
En 1995, coup de théâtre : les premiers condensats de Bose-Einstein gazeux sont réalisés avec des atomes froids d'alcalins au JILA et au MIT ; très peu denses, ces systèmes échappent temporairement à la solidification et sont en interaction effective répulsive. Plusieurs équipes s'engouffrent dans la brèche, y compris à l'ENS Ulm. Pour expliquer les premières observations, des approches macroscopiques simples suffisent.
L'accent est mis sur les effets du piège harmonique absent des théories fondatrices. Cependant, les mesures s'affinent, et l'on trouve comment accéder aux propriétés intrinsèques du gaz homogène. Des questions ouvertes sont réactivées, comme le temps de cohérence du condensat. Des applications sont développées, comme l'utilisation de la compression de spin et des états chats de Schrödinger en métrologie quantique.
Des gaz homogènes sont préparés à une ou à deux dimensions, où il n'y a plus de condensation de Bose à la limite thermodynamique. Même la fameuse équation de Gross-Pitayevski sur le mode du condensat ne suffit plus. Il faut donc se replonger dans les théories d'antan et les étendre ; il faut en développer de nouvelles. C'est à cette aventure qu'invite cet ouvrage, en prenant toujours le parti de la simplicité.
Issu d'enseignements donnés par l'auteur dans les écoles de physique des Houches et de Cargèse, enrichi de résultats non publiés, il est accessible à tout étudiant de master, enseignant, chercheur intéressé par les aspects fondamentaux de ce domaine plein de vitalité que sont les gaz quantiques. Chapitres du tome 1 : Statistique quantique et interaction. L'équation de Gross-Pitayevski. La théorie de Bogolioubov.
Pulsations propres au-delà de Gross-Pitayevski.
Après leur prédiction par Einstein en 1925, les gaz condensés de Bose sont restés longtemps des vues de l'esprit car, par la faute d'interactions attractives, aucun système connu ne restait gazeux à suffisamment basse température pour en permettre l'observation. Mais des théories microscopiques ont été développées, comme celle très féconde de Bogolioubov en 1947, pour comprendre les effets d'une interaction modèle répulsive sur les propriétés statiques et dynamiques du gaz, dont la superfluidité.
En 1995, coup de théâtre : les premiers condensats de Bose-Einstein gazeux sont réalisés avec des atomes froids d'alcalins au JILA et au MIT ; très peu denses, ces systèmes échappent temporairement à la solidification et sont en interaction effective répulsive. Plusieurs équipes s'engouffrent dans la brèche, y compris à l'ENS Ulm. Pour expliquer les premières observations, des approches macroscopiques simples suffisent.
L'accent est mis sur les effets du piège harmonique absent des théories fondatrices. Cependant, les mesures s'affinent, et l'on trouve comment accéder aux propriétés intrinsèques du gaz homogène. Des questions ouvertes sont réactivées, comme le temps de cohérence du condensat. Des applications sont développées, comme l'utilisation de la compression de spin et des états chats de Schrödinger en métrologie quantique.
Des gaz homogènes sont préparés à une ou à deux dimensions, où il n'y a plus de condensation de Bose à la limite thermodynamique. Même la fameuse équation de Gross-Pitayevski sur le mode du condensat ne suffit plus. Il faut donc se replonger dans les théories d'antan et les étendre ; il faut en développer de nouvelles. C'est à cette aventure qu'invite cet ouvrage, en prenant toujours le parti de la simplicité.
Issu d'enseignements donnés par l'auteur dans les écoles de physique des Houches et de Cargèse, enrichi de résultats non publiés, il est accessible à tout étudiant de master, enseignant, chercheur intéressé par les aspects fondamentaux de ce domaine plein de vitalité que sont les gaz quantiques. Chapitres du tome 1 : Statistique quantique et interaction. L'équation de Gross-Pitayevski. La théorie de Bogolioubov.
Pulsations propres au-delà de Gross-Pitayevski.