
IX

The Schwarz Lemma and
Hyperbolic Geometry

This short chapter is devoted to the Schwarz lemma, which is a simple
consequence of the power series expansion and the maximum principle.
The Schwarz lemma is proved in Section 1, and it is used in Section 2
to determine the conformal self-maps of the unit disk. In Section 2 we
formulate the Schwarz lemma to be invariant under the conformal self-maps
of the unit disk, thereby obtaining Pick’s lemma. This leads in Section 3
to the hyperbolic metric and hyperbolic geometry of the unit disk.

1. The Schwarz Lemma

The Schwarz lemma is easy to prove, yet it has far-reaching consequences.

Theorem (Schwarz Lemma). Let f(z) be analytic for |z| < 1. Suppose
|f(z)| ≤ 1 for all |z| < 1, and f(0) = 0. Then

(1.1) |f(z)| ≤ |z|, |z| < 1.

Further, if equality holds in (1.1) at some point z0 �= 0, then f(z) = λz for
some constant λ of unit modulus.

For the proof, we factor f(z) = zg(z), where g(z) is analytic, and we
apply the maximum principle to g(z). Let r < 1. If |z| = r, then |g(z)| =
|f(z)|/r ≤ 1/r. By the maximum principle, |g(z)| ≤ 1/r for all z satisfying
|z| ≤ r. If we let r → 1, we obtain |g(z)| ≤ 1 for all |z| < 1. This yields
(1.1). If |f(z0)| = |z0| for some z0 �= 0, then |g(z0)| = 1, and by the strict
maximum principle, g(z) is constant, say g(z) = λ. Then f(z) = λz.
An analogous estimate holds in any disk. If f(z) is analytic for |z−z0| <

R, |f(z)| ≤M , and f(z0) = 0, then

(1.2) |f(z)| ≤ M

R
|z − z0|, |z − z0| < R,
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with equality only when f(z) is a multiple of z − z0. This can be proved
directly, based on the factorization f(z) = (z − z0)g(z). It can also be
obtained from (1.1) by scaling in both the z-variable and the w-variable,
w = f(z), and by translating the center of the disk to z0, as follows. The
change of variable ζ �→ Rζ + z0 maps the unit disk {|ζ| < 1} onto the disk
{|z − z0| < R}. If we define h(ζ) = f(Rζ + z0)/M , then h(ζ) is analytic
on the open unit disk and satisfies |h(ζ)| ≤ 1 and h(0) = 0. The estimate
|h(ζ)| ≤ |ζ| becomes (1.2).
The Schwarz lemma gives an explicit estimate for the “modulus of con-

tinuity” of an analytic function. It shows that a uniformly bounded family
of analytic functions is “equicontinuous” at each point. We will return
in Chapter XI to treat the ideas of equicontinuity and compactness for
families of analytic functions.
There is an infinitesimal version of the Schwarz lemma.

Theorem. Let f(z) be analytic for |z| < 1. If |f(z)| ≤ 1 for |z| < 1, and
f(0) = 0, then

(1.3) |f ′(0)| ≤ 1,

with equality if and only if f(z) = λz for some constant λ with |λ| = 1.

The estimate (1.3) follows by taking z → 0 in the Schwarz lemma. For
the case of equality, we consider the factorization f(z) = zg(z) used in
the proof of the Schwarz lemma, and we observe that g(0) = f ′(0). If
|f ′(0)| = 1, we then have |g(0)| = 1, and we conclude as before from the
strict maximum principle that g(z) is constant. Hence f(z) = λz.
Note that the estimate (1.3) is the same as the Cauchy estimate for

f ′(0) derived in Section IV.4, without the hypothesis that f(0) = 0. See
also Exercise 7.

Exercises for IX.1

1. Let f(z) be analytic and satisfy |f(z)| ≤M for |z − z0| < R. Show
that if f(z) has a zero of order m at z0, then

|f(z)| ≤ M

Rm
|z − z0|m, |z − z0| < R.

Show that equality holds at some point z �= z0 only when f(z) is a
constant multiple of (z − z0)m.

2. Suppose that f(z) is analytic and satisfies |f(z)| ≤ 1 for |z| < 1.
Show that if f(z) has a zero of order m at z0, then |z0|m ≥ |f(0)|.
Hint. Let ψ(z) = (z − z0)/(1 − z0z), which is a fractional linear
transformation mapping the unit disk onto itself, and show that
|f(z)| ≤ |ψ(z)|m.
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3. Suppose that f(z) is analytic for |z| ≤ 1, and suppose that 1 <
|f(z)| < M for |z| = 1, while f(0) = 1. Show that f(z) has a zero
in the unit disk, and that any such zero z0 satisfies |z0| > 1/M .
Hint. For the second assertion, consider ψ(f(z)), where ψ(w) is
a fractional linear transformation mapping 1 to 0 and the circle
{|w| =M} to the unit circle. Or use Exercise 2.

4. Suppose that f(z) is analytic for |z| < 1 and satisfies f(0) = 0 and
Re f(z) < 1. (a) Show that |f(z)| ≤ 2|z|/(1 − |z|). Hint. Consider
the composition of f(z) and the fractional linear transformation
mapping the half-plane {Rew < 1} onto the unit disk. (b) Show
that |f ′(0)| ≤ 2. (c) For fixed z0 with 0 < |z0| < 1, determine
for which functions f(z) there is equality in (a). (d) Determine
for which functions f(z) there is equality in (b). (e) By scaling the
estimates in (a) and (b), obtain sharp estimates for |g(z)| and |g′(0)|
for functions g(z) analytic for |z| < R and satisfying g(0) = 0 and
Re g(z) < C.

5. Suppose that f(z) is analytic and satisfies |f(z)| ≤ 1 for |z| < 1.
Show that if |f(0)| ≥ r, then |f(z)| ≥ (r− |z|)/(1− r|z|) for |z| < r.
Determine for which functions f(z) equality holds at some point z0
with |z0| < r.

6. Let f(z) be a conformal map of the open unit disk onto a domain D.
Show that the distance from f(0) to the boundary of D is estimated
by dist(f(0), ∂D) ≤ |f ′(0)|.

7. Suppose that f(z) =
∑∞

k=0 akz
k is analytic for |z| < 1 and satisfies

|f(z)| ≤M .
(a) Show that

∑∞
k=0 |ak|2 ≤M2. Hint. Integrate |f(z)|2 around a

circle of radius r.
(b) Show using (a) that |f ′(0)| ≤ M , with equality only if f(z)

is a constant multiple of z. Remark. It is not assumed that
f(0) = 0.

(c) Show that |f (k)(0)| ≤ k!M , with equality only if f(z) is a con-
stant multiple of zk.

8. Suppose that f(z) is analytic for |z| < 1 and satisfies |f(z)| < 1,
f(0) = 0, and |f ′(0)| < 1. Let r < 1. Show that there is a constant
c < 1 such that |f(z)| ≤ c|z| for |z| ≤ r. Show that the nth iterate
fn(z) = f(f(· · · f(z) · · · )) = f(fn−1(z)) of f(z) satisfies |fn(z)| ≤
cn|z| for |z| ≤ r. Deduce that fn(z) converges to zero normally on
the open unit disk D.
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2. Conformal Self-Maps of the Unit Disk

We denote by D the open unit disk in the complex plane, D = {|z| < 1}.
A conformal self-map of the unit disk is an analytic function from D

to itself that is one-to-one and onto. The composition of two conformal
self-maps is again a conformal self-map, and the inverse of a conformal
self-map is a conformal self-map. The conformal self-maps form what is
called a “group,” with composition as the group operation. The group
identity is the identity map g(z) = z.
For fixed angle ϕ, the rotation z �→ eiϕz is a conformal self-map of D

that fixes the origin, and these are the only conformal self-maps that leave 0
fixed.

Lemma. If g(z) is a conformal self-map of the unit disk D such that g(0) =
0, then g(z) is a rotation, that is, g(z) = eiϕz for some fixed ϕ, 0 ≤ ϕ ≤ 2π.

To see this, we apply the Schwarz lemma to g(z) and to its inverse. Since
g(0) = 0 and |g(z)| < 1, the Schwarz lemma applies, and |g(z)| ≤ |z|. If
we apply the Schwarz lemma also to g−1(w), we obtain |g−1(w)| ≤ |w|,
which for w = g(z) becomes |z| ≤ |g(z)|. Thus |g(z)| = |z|. Since g(z)/z
has constant modulus, it is constant. Hence g(z) = λz for a unimodular
constant λ.

Theorem. The conformal self-maps of the open unit disk D are precisely
the fractional linear transformations of the form

(2.1) f(z) = eiϕ
z − a

1− az
, |z| < 1,

where a is complex, |a| < 1, and 0 ≤ ϕ ≤ 2π.

Define g(z) = (z − a)/(1− āz). Since g(z) is a fractional linear transfor-
mation, it is a conformal self-map of the extended complex plane, and it
maps circles to circles. From

|eiθ − a| = |e−iθ − ā| = |1− āeiθ|, 0 ≤ θ ≤ 2π,

we see that |g(z)| = 1 for z = eiθ, so that g(z) maps the unit circle to itself.
Since g(a) = 0, g(z) must map the open unit disk to itself. Consequently,
g(z) is a conformal self-map of the unit disk, and so is f(z) defined by (2.1).
Let h(z) be an arbitrary conformal self-map of D, and set a = h−1(0). Then
h ◦ g−1 is a conformal self-map of D, and (h ◦ g−1)(0) = h(a) = 0. By the
lemma, (h ◦ g−1)(w) = eiϕw for some fixed ϕ, 0 ≤ ϕ ≤ 2π. Writing
w = g(z), we obtain h(z) = eiϕg(z), and h(z) has the form (2.1).
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The parameters a and eiϕ are uniquely determined by the conformal
self-map f(z) of D. The parameter a is f−1(0), and since

f ′(z) = eiϕ
1− |a|2
(1− āz)2

, |z| < 1,

the parameter ϕ is uniquely specified (modulo 2π) as the argument of f ′(0).
Thus there is a one-to-one correspondence between points of the parameter
space D× ∂D and conformal self-maps of the open unit disk.
Next we take a giant step by proving a form of the Schwarz lemma that

is invariant under conformal self-maps of the open unit disk.

Theorem (Pick’s Lemma). If f(z) is analytic and satisfies |f(z)| < 1
for |z| < 1, then

(2.2) |f ′(z)| ≤ 1− |f(z)|2
1− |z|2 , |z| < 1.

If f(z) is a conformal self-map of D, then equality holds in (2.2); otherwise,
there is strict inequality for all |z| < 1.

To prove (2.2), our strategy is to transport z and f(z) to 0 using con-
formal self-maps, and to apply the Schwarz lemma to the resulting com-
position. Fix z0 ∈ D and set w0 = f(z0). Let g(z) and h(z) be conformal
self-maps of D mapping 0 to z0 and w0 to 0, respectively, say

g(z) =
z + z0
1 + z0z

, h(w) =
w − w0

1− w0w
.

Then h ◦ f ◦ g maps 0 to 0. The estimate (1.3) and the chain rule yield

(2.3) |(h ◦ f ◦ g)′(0)| = |h′(w0)f ′(z0)g′(0)| ≤ 1,

hence |f ′(z0)| ≤ 1/|g′(0)||h′(w0)|. Substituting g′(0) = 1 − |z0|2 and
h′(w0) = 1/(1− |w0|2), we obtain (2.2).

O
Oz0

w0

g f h

If f(z) is a conformal self-map of D, then so is h◦f ◦g, so we have equality
in (2.3), which yields equality in (2.2). Conversely, suppose that f(z) is
an analytic function from D to D such that equality holds in (2.2) at one
point z0. Then the calculations above give |(h ◦ f ◦ g)′(0)| = 1. According
to Section 1, h ◦ f ◦ g is multiplication by a unimodular constant, hence a
conformal self-map of D. Composing by h−1 on the left and by g−1 on the
right, we conclude that f is a conformal self-map of D.
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Exercises for IX.2

1. A finite Blaschke product is a rational function of the form

B(z) = eiϕ
(
z − a1
1− a1z

)
· · ·
(
z − an
1− anz

)
,

where a1, . . . , an ∈ D and 0 ≤ ϕ ≤ 2π. Show that if f(z) is continu-
ous for |z| ≤ 1 and analytic for |z| < 1, and if |f(z)| = 1 for |z| = 1,
then f(z) is a finite Blaschke product.

2. Show that f(z) = (3 + z2)/(1 + 3z2) is a finite Blaschke product.

3. Suppose f(z) is analytic for |z| < 3. If |f(z)| ≤ 1, and f(±i) =
f(±1) = 0, what is the maximum value of |f(0)|? For which func-
tions is the maximum attained?

4. For fixed z0, z1 ∈ D, find the maximum value of |f(z1) − f(z0)|
among all analytic functions f(z) on the open unit disk D satisfying
|f(z)| < 1. Determine for which such functions the maximum value
is attained. Hint. Consider first the case where z0 = r > 0 and
z1 = −r, and show that the maximum is 2r, attained only for
f(z) = λz, |λ| = 1.

5. Show that any conformal self-map of the upper half-plane has the
form

f(z) =
az + b

cz + d
, Im z > 0,

where a, b, c, d are real numbers satisfying ad−bc = 1. When do two
such coefficient choices for a, b, c, d determine the same conformal
self-map of the upper half-plane?

6. Show that the conformal maps of the upper half-plane onto the open
unit disk are of the form

f(z) = eiϕ
z − a

z − ā
, Im a > 0, 0 ≤ ϕ ≤ 2π.

Show that a and eiϕ are uniquely determined by the conformal map.

7. Show that every conformal self-map of the complex plane C has the
form f(z) = az + b, where a �= 0. Hint. The isolated singularity of
f(z) at ∞ must be a simple pole.

8. Show that every conformal self-map of the Riemann sphere C∗ is
given by a fractional linear transformation.

9. Show that any conformal self-map of the punctured unit disk {0 <
|z| < 1} is a rotation z �→ eiϕz.
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10. Show that any conformal self-map of the punctured complex plane
{0 < |z| <∞} is either a multiplication z �→ az, or such a multipli-
cation followed by the inversion z �→ 1/z.

11. Let D = C\{a1, . . . , am} be the complex plane with m punctures.
Show that any conformal self-map of D is a fractional linear trans-
formation that permutes {a1, . . . , am,∞}.

12. Determine the conformal self-maps of the following domains D: (a)
D = C\{0, 1}, (b) D = C\{−1, 0, 1}, (c) D = C\{−1, 0, 2}.

13. Suppose f(z) is an analytic function from the open unit disk D to
itself that is not the identity map z. Show that f(z) has at most one
fixed point in D. Hint. Make a change of variable with a conformal
self-map of D to place the fixed point at 0.

14. Suppose f(z) is an analytic function from the open unit disk D to
itself that is not a conformal self-map, and denote by fn(z) the nth
iterate of f(z). Show that if f(z) has a fixed point z0 ∈ D, then
fn(z) converges to z0 for each z ∈ D. Show that for each r < 1, the
convergence is uniform for |z| ≤ r. Hint. See Exercise 1.8.

15. We say that two conformal self-maps f and g of D are conjugate if
there is a conformal self-map h of D such that g = h ◦ f ◦ h−1. (See
the exercises for Section II.7.) Let f be a conformal self-map of D

that is not the identity map z. (a) Show that either f has two fixed
points on ∂D, counting multiplicity, or f has one fixed point in D.
(b) Show that f has a fixed point in D if and only if f is conjugate to
a rotation g(z) = eiϕz. (c) Show that rotations by different angles
are not conjugate. (d) Show that f has two distinct fixed points
on ∂D if and only if f is conjugate to g(z) = (z − s)/(1 − sz) for
some s satisfying 0 < s < 1. (e) Show that g’s for different s’s are
not conjugate. (f) Show that any two conformal self-maps of D with
one fixed point on ∂D (of multiplicity two) are conjugate.

3. Hyperbolic Geometry

Suppose w = f(z) is a conformal self-map of the open unit disk D. From
Pick’s lemma we then have equality in (2.2),∣∣∣∣dwdz

∣∣∣∣ = 1− |w|2
1− |z|2 .

In differential form this becomes

|dw|
1− |w|2 =

|dz|
1− |z|2 ,
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which means that if γ is any smooth curve in D, and w = f(z) is a conformal
self-map of D, then

(3.1)
∫
f◦γ

|dw|
1− |w|2 =

∫
γ

|dz|
1− |z|2 .

Thus to obtain a length function that is invariant under conformal self-
maps of D, we are led to make the following definition. We define the
length of γ in the hyperbolic metric by

(3.2) hyperbolic length of γ = 2
∫
γ

|dz|
1− |z|2 .

The factor 2 is a harmless factor, which is often omitted. (It adjusts the
metric so that its curvature is −1.) The identity (3.1) shows that f ◦ γ
has the same hyperbolic length as γ for any conformal self-map f(z) of D.
Thus hyperbolic lengths are invariant under conformal self-maps of D.
We define the hyperbolic distance ρ(z0, z1) from z0 to z1 to be the

infimum (greatest lower bound) of the hyperbolic lengths of all piecewise
smooth curves in D from z0 to z1. Since conformal self-maps of D preserve
the hyperbolic lengths of curves, they also preserve hyperbolic distances;
that is, for any conformal self-map w = f(z) of D,

ρ(f(z0), f(z1)) = ρ(z0, z1), z0, z1 ∈ D.

Theorem. For any two distinct points z0, z1 in the open unit disk D, there
is a unique shortest curve in D from z0 to z1 in the hyperbolic metric,
namely, the arc of the circle passing through z0 and z1 that is orthogonal
to the unit circle.

The paths of shortest hyperbolic length between points are called hy-
perbolic geodesics. The hyperbolic geodesics play the role that straight
lines play in the Euclidean geometry of the plane. They satisfy all the ax-
ioms of Euclidean geometry except the parallel axiom (that through each
point not on a given line there passes a unique straight line through the
point and parallel to the given line).

hyperbolic geodesics

γ

O r

For a proof of the theorem, let w = f(z) be a conformal self-map of D

such that f(z0) = 0. By multiplying by a unimodular constant, we can
arrange that f(z1) = r > 0. Since f(z) preserves hyperbolic lengths, and
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since f(z) maps circles orthogonal to the unit circle onto circles orthogonal
to the unit circle, it suffices to show that the straight line segment from 0
to r is a unique path of shortest hyperbolic length from 0 to r. For this,
let γ(t) = x(t) + iy(t), 0 ≤ t ≤ 1, be a piecewise smooth path in D from 0
to r. Then α(t) = Re(γ(t)) = x(t) defines a path in D from 0 to r along
the real axis, and∫

α

|dz|
1− |z|2 =

∫ 1

0

|dx(t)|
1− x(t)2

≤
∫ 1

0

|dx(t)|
1− |γ(t)|2 ≤

∫
γ

|dz|
1− |z|2 .

If y(t) �= 0 for some t, then |γ(t)| > |x(t)|, and the first inequality above is
strict. In this case, the path α(t) on the real axis is strictly shorter than
the path γ(t). Further, if α(t) is decreasing on some interval, we could
reduce the integral by deleting a parameter interval over which α(t) starts
and ends at the same value. We conclude that the integral is a minimum
exactly when γ(t) is real and nondecreasing, in which case the path is the
straight line segment from 0 to r.
We turn now to an important reinterpretation of Pick’s lemma.

Theorem. Every analytic function w = f(z) from the open unit disk D

to itself is a contraction mapping with respect to the hyperbolic metric ρ,

(3.3) ρ(f(z0), f(z1)) ≤ ρ(z0, z1), z0, z1 ∈ D.

Further, there is strict inequality for all points z0, z1 ∈ D, z0 �= z1, unless
f(z) is a conformal self-map of D, in which case there is equality for all
z0, z1 ∈ D.

To see this, let γ be the geodesic from z0 to z1. Then f ◦γ is a curve from
f(z0) to f(z1). Pick’s lemma and the definition of the hyperbolic metric
yield

ρ(f(z0), f(z1)) ≤ 2
∫
f◦γ

|dw|
1− |w|2 = 2

∫
γ

|f ′(z)| |dz|
1− |f(z)|2

≤ 2
∫
γ

|dz|
1− |z|2 = ρ(z0, z1).

If f(z) is not a conformal self-map of D, there is strict inequality in Pick’s
lemma, and we obtain strict inequality in this estimate, hence in (3.3).
The hyperbolic distance from 0 to z can be computed explicitly. It is

ρ(0, z) = 2
∫ |z|

0

dt

1− t2
=
∫ |z|

0

[
1

1− t
+

1
1 + t

]
dt = log

(
1 + |z|
1− |z|

)
.

This shows that the hyperbolic distance from 0 to z tends to +∞ when z
tends to the boundary of the unit disk.
A geodesic triangle is an area bounded by three hyperbolic geodesics.

Since the hyperbolic geodesics and the angles between them are preserved
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O

hyperbolic triangles

by conformal self-maps of D, we can map any geodesic triangle to a triangle
with vertex at 0 and with the same angles between sides. For a geodesic
triangle with vertex at 0, two of the sides are radial segments, and the third
is an arc of a circle lying inside the Euclidean triangle with the two radii
as sides. From this representation we see that the sum of the angles of any
geodesic triangle is strictly less than π, which is the sum of the angles of
the corresponding Euclidean triangle.
In connection with complex analysis, we have now been in contact with

three spaces with strikingly different geometries. The first space is the
complex plane C with the usual Euclidean metric |dz|. In the Euclidean
plane, the geodesics are straight lines, and the sum of the angles of a
geodesic triangle is exactly equal to π. The second space is the open unit
disk D with the hyperbolic metric 2|dz|/(1−|z|2). For the hyperbolic disk,
the geodesics are arcs of circles orthogonal to the unit circle, and the sum
of angles of a geodesic triangle is strictly less than π.
The third space is the extended complex plane C∗ = C ∪ {∞} with the

spherical metric, which can be introduced in a manner completely analo-
gous to the hyperbolic metric. Recall (Section I.3) that the chordal metric
induced on C by the Euclidean metric of the sphere via the stereographic
projection is given explicitly by

chordal distance from z to w =
2|z − w|√

1 + |z|2
√
1 + |w|2

.

The infinitesimal form of this metric is 2|dz|/(1+ |z|2). If γ is a path in C∗,
its length in the spherical metric is

spherical length of γ = 2
∫
γ

|dz|
1 + |z|2 = 2

∫ |γ′(t)|
1 + |γ(t)|2 dt .

This is the length of the corresponding path on the unit sphere in R3.
The distance from z1 to z2 in the spherical metric is defined to be
the infimum of the spherical lengths of the paths joining z1 to z2. Since
the chordal metric is invariant under rotations of the sphere, so is the
spherical metric, and consequently, the lengths of paths and the distances
between points in the spherical metric are invariant under rotations. It is
not difficult to show that the geodesics in the spherical metric correspond
to great circles on the sphere, and the sum of the angles of a geodesic
triangle is strictly greater than π.
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Each of these three spaces is homogeneous, in the sense that any pre-
scribed point can be transported to any other by an “isometry.” Thus for
each of these spaces, any scalar quantity that is invariant under isometries
is constant. It turns out that a notion of “scalar curvature” can be associ-
ated to each of the spaces (see the exercises), and the curvature is invariant
under isometries, so that in each case the curvature is constant. The Eu-
clidean plane has constant zero curvature, the sphere has constant positive
curvature, and the hyperbolic disk has constant negative curvature. The
curvature can be related to the area and the sum of angles of geodesic tri-
angles (Gauss-Bonnet formula). We summarize these properties in tabular
form.

Geometry Euclidean Spherical Hyperbolic

Infinitesimal length |dz| 2|dz|
1 + |z|2

2|dz|
1− |z|2

Oriented isometries eiϕz + b rotations conformal self-maps

Curvature 0 + 1 − 1
Geodesics lines great circles circles ⊥ unit circle

Angles of triangle = π > π < π

Disk circumference 2πρ 2πρ− πρ3

3
+O(ρ5) 2πρ+

πρ3

3
+O(ρ5)

Euclidean disk spherical disk hyperbolic disk

Exercises for IX.3

1. Show by direct computation that |w′(z)| = (1− |w|2)/(1− |z|2) for
any conformal self-map w = f(z) of D.

2. A hyperbolic disk centered at z0 ∈ D of radius ρ > 0 consists
of all z ∈ D such that ρ(z, z0) < ρ. (a) Show that the hyperbolic
disk centered at 0 of radius ρ is a Euclidean disk of radius r =
(eρ − 1)/(eρ +1). (b) Show that any hyperbolic disk is a Euclidean
disk.

3. Denote by c(z, ρ) and r(z, ρ) the Euclidean center and Euclidean
radius of the hyperbolic disk centered at z of hyperbolic radius ρ.
(a) For fixed ρ, show that r(z, ρ)/(1−|z|) tends to a constant A > 0
as |z| → 1. (b) For fixed ρ, show that |z− c(z, ρ)|/r(z, ρ) tends to a
constant B, 0 < B < 1, as |z| → 1.
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4. Show that the circumference of a hyperbolic disk of radius ρ is
2π sinh ρ. Hint. Show first that the hyperbolic circumference of
a Euclidean disk of radius r centered at 0 is 4πr/(1− r2).

5. We define the hyperbolic area of a subset E of D to be

4
∫∫

E

dx dy

(1− |z|2)2 .

Show that the hyperbolic area is invariant under conformal self-
maps of D. Show that the hyperbolic area of a hyperbolic disk of
radius ρ is given by

2π(cosh ρ − 1) = πρ2 +
π

12
ρ4 +O(ρ6).

6. Establish the following, for the spherical metric. (a) The circumfer-
ence of a spherical disk of radius ρ is 2π sin ρ, 0 < ρ < π. (b) The
area of a spherical disk of radius ρ is given by

2π(1− cos ρ) = πρ2 − π

12
ρ4 +O(ρ6).

(c) The geodesics in the spherical metric correspond to great circles
on the sphere. Hint. It suffices to show that the shortest curve
from 0 to ε in the spherical metric is the straight line segment joining
them.

7. Show that an isometry of the hyperbolic disk D is either a conformal
self-map of D or the composition of a conformal self-map and the
reflection z �→ z̄.

8. Let f(z) = (az+b)/(cz+d), where ad−bc = 1. Show that f(z) is an
isometry in the spherical metric if and only if the matrix

(
a b
c d

)
is unitary.

9. Show that the function f(z) = z2 is strictly contracting with respect
to the hyperbolic metric on any subdisk {|z| ≤ r}, 0 < r < 1, and
that any branch of the square root function is strictly expanding,
by establishing the following. (a) For fixed r, 0 < r < 1, show that

ρ(z2, ζ2) ≤ 2r
1 + r2

ρ(z, ζ), |z|, |ζ| ≤ r.

When does equality hold? (b) Show that the constant 2r/(1 + r2)
in (a) is sharp. (c) For fixed s, 0 < s < 1, show that

ρ
(
±
√
z,±
√
ζ
)
≥ 1 + s

2
√
s
ρ(z, ζ), |z|, |ζ| ≤ s.
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10. Show that

d(z, w) =
∣∣∣∣ z − w

1− w̄z

∣∣∣∣ , |z|, |w| < 1,

satisfies the triangle inequality, that is, d(z, w) ≤ d(z, ζ) + d(ζ, w)
for all z, ζ, w ∈ D. Remark. This can be regarded as the analogue
of the chordal metric for the sphere (defined in Section I.3). Except
for the constant factor 2, the hyperbolic metric is the infinitesimal
version of the metric function d(z, w).

11. Show that the metric function d(z, w) defined in the preceding ex-
ercise satisfies

d(f(z), f(w)) ≤ d(z, w), |z|, |w| < 1,

for any analytic function f(z) from D to D. Show that equality
obtains whenever f(z) is a conformal self-map of D, and otherwise
there is strict inequality for all z �= w.

12. A conformal map g(z) of a domain D onto the open unit disk D

induces the metric ρD on D defined by

dρD(z) =
2|g′(z)|
1− |g(z)|2 |dz| , z ∈ D.

Show that ρD is independent of the conformal map g(z) ofD onto D.
Remark. The metric ρD is called the hyperbolic metric of the
simply connected domain D.

13. Show that the hyperbolic metric of the upper half-plane H is given
by

dρH(z) =
|dz|
y
, z = x+ iy, y > 0.

What are the geodesics in the hyperbolic metric? Illustrate with a
sketch.

14. Show that the horizontal strip S = {−π/2 < Im z < π/2} has
hyperbolic metric

dρS(z) =
|dz|
cos y

, z = x+ iy, −π/2 < y < π/2.

Sketch the hyperbolic geodesics that are orthogonal to the vertical
interval {iy : −π/2 < y < π/2}.

15. The curvature of the metric σ(z)|dz| is defined to be

κ(z) = − 1
σ(z)2

(
∂2

∂x2
+

∂2

∂y2

)
log σ(z).
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Find the curvature of each of the spherical, the hyperbolic, and the
Euclidean metrics.

16. (Wolff-Denjoy Theorem.) Let f(z) be an analytic function from D

to D. Let fn(z) denote the nth iterate of f(z), and let Kr denote
the closed disk {|z| ≤ r}.
(a) Show that if f(z) is not a conformal self-map of D, then for

any r < 1 there is a constant c < 1 such that ρ(f(z), f(w)) ≤
cρ(z, w) for z, w ∈ Kr.

(b) Show that if the image f(D) is contained in Kr for some r < 1,
then the iterates fn(z) converge uniformly on D to a fixed point
for f(z).

(c) Show that if f(z) is not a conformal self-map of D, and if there
is r < 1 such that the iterates of some point z0 ∈ D visit Kr

infinitely often, then the iterates fn(z) converge normally on D

to a fixed point of f(z). Hint. First find the fixed point.
(d) Show that if the iterates of some point z0 ∈ D tend to the unit

circle ∂D, then there is a point ζ ∈ ∂D (the Wolff-Denjoy
point) such that the iterates fn(z) converge normally on D

to ζ. Hint. Suppose z0 = 0. Define gε(z) = (1 − ε)f(z), let zε
be the fixed point of gε(z), and let Dε be the hyperbolic disk
centered at zε with 0 on its boundary. Show that the limit D
of the Dε’s is a Euclidean disk that is invariant under f(z) and
whose boundary meets ∂D in exactly one point.
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