Topologie des espaces métriques et des espaces vectoriels normés. En 148 exercices corrigés et 554 questions vrai/faux

Par : Vincent Blanloeil
Définitivement indisponible
Cet article ne peut plus être commandé sur notre site (ouvrage épuisé ou plus commercialisé). Il se peut néanmoins que l'éditeur imprime une nouvelle édition de cet ouvrage à l'avenir. Nous vous invitons donc à revenir périodiquement sur notre site.
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format PDF protégé est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
  • Non compatible avec un achat hors France métropolitaine
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • Nombre de pages360
  • FormatPDF
  • ISBN978-2-340-08780-4
  • EAN9782340087804
  • Date de parution20/02/2018
  • Protection num.Adobe DRM
  • Taille6 Mo
  • Infos supplémentairespdf
  • ÉditeurEllipses

Résumé

Le cours d'introduction présenté dans ce livre a pour but de rendre accessibles les notions de base de la topologie en les introduisant dans le cadre des espaces métriques et des espaces vectoriels normés dans un premier temps. Le premier chapitre présente les rudiments indispensables de la théorie des ensembles avant d'aborder l'étude des espaces métriques et des espaces vectoriels normés dans les chapitres suivants.
Avant d'aborder la topologie générale en fin d'ouvrage, un chapitre illustre la richesse des structures topologiques des espaces vectoriels normés en démontrant quelques résultats plus difficiles mais profonds. Les résultats et les structures topologiques présentés dans cet ouvrage sont fondamentaux pour tous les étudiants en Licence de Mathématiques, qu'ils poursuivent leurs études en Master recherche ou en Master enseignement.
Les nouvelles notions sont systématiquement illustrées par des exemples simples pour permettre au lecteur de les assimiler aisément ; les nombreux exercices corrigés à la fin de chaque chapitre lui permettront travailler en autonomie.
Le cours d'introduction présenté dans ce livre a pour but de rendre accessibles les notions de base de la topologie en les introduisant dans le cadre des espaces métriques et des espaces vectoriels normés dans un premier temps. Le premier chapitre présente les rudiments indispensables de la théorie des ensembles avant d'aborder l'étude des espaces métriques et des espaces vectoriels normés dans les chapitres suivants.
Avant d'aborder la topologie générale en fin d'ouvrage, un chapitre illustre la richesse des structures topologiques des espaces vectoriels normés en démontrant quelques résultats plus difficiles mais profonds. Les résultats et les structures topologiques présentés dans cet ouvrage sont fondamentaux pour tous les étudiants en Licence de Mathématiques, qu'ils poursuivent leurs études en Master recherche ou en Master enseignement.
Les nouvelles notions sont systématiquement illustrées par des exemples simples pour permettre au lecteur de les assimiler aisément ; les nombreux exercices corrigés à la fin de chaque chapitre lui permettront travailler en autonomie.